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B Omitted Proofs

B.1 Omitted Proofs from Appendix A.

B.1.1 Proof of Proposition 7

Proof. Since the DM can stop immediately, we have V ∗(p) ≥ U(p). For the second

inequality, consider the problem of a decision maker who can choose αt ∈ [0, 1] and

βt ∈ [0, 1] without the constraint that αt+βt = 1. Clearly the value of this problem exceeds

V ∗(p) for all p. The value function of the unconstrained problem is max
{
U(p), UFA(p)

}
.

To see this, note that it is optimal to choose αt = βt = 1. Given this policy, the belief does

not change over time if no breakthrough occurs. The optimal policy is therefore either

to stop immediately or to wait without deadline until a breakthrough occurs. Hence the

value of the unconstrained problem is max
{
U(p), UFA(p)

}
. Therefore V ∗(p) = U(p) =

max
{
U(p), UFA(p)

}
if (EXP) is violated.

B.1.2 Proof of Lemma 1

Proof. The result follows from straightforward algebra.

B.1.3 Proof of Lemma 2

Proof. Suppose V0(p) = V1(p) = V (p) for some p ∈ (0, 1). Solving (A7) and (A8) for

V ′0(p) and V ′1(p) and some algebra yields

V ′0(p)− V ′1(p) =
λ+ 2ρ

λp(1− p)
(
V (p)− US(p)

)
.

Therefore sgn(V ′0(p)− V ′1(p)) = sgn
(
V (p)− US(p)

)
.

B.1.4 Proof of Lemma 3

Proof. Consider first the case that V0(p) satisfies (A7). With V = V0(p), and substituting

V ′ = V ′0(p) from (A7), we have

∂Fα(p, V0(p), V ′0(p))

∂α
=

2ρ+ λ

λ

(
US(p)− V0(p)

)
.

This implies that α = 0 is a maximizer if V0(p) ≥ US(p), and the unique maximizer if

the inequality is strict. This proves Part (a). The proof of Part (b) follows from a similar

argument.
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B.1.5 Proof of Proposition 8

The following three lemmas establish properties of the function US, V FA, Vown and Vopp

that are used in the proof of Proposition 8. Some of these properties were already estab-

lished in Appendix A and are repeated here for convenience.

Lemma 4 (Properties of US(p) and UFA(p)). (a) US(p) < UFA(p) for all p ∈ [0, 1].

(b) US(p) and UFA(p) are linear in p.

If US(p) ≥ U(p) for some p ∈ [0, 1], then U ′`(p) < US′(p) < U ′r(p) for all p ∈ [0, 1].

If UFA(p) ≥ U(p) for some p ∈ [0, 1], then U ′`(p) < UFA′(p) < U ′r(p) for all p ∈ [0, 1].

(c) US(p), UFA(p) < U(p) at p ∈ {0, 1}.
For all p ∈ [0, 1], US(p) and UFA(p) are strictly decreasing without bound in c.

Proof. (a) US(p) < UFA(p) is immediate from the expressions in (A2) and (A3).

(b) Linearity is obvious. Suppose US(p) ≥ U(p) for some p ∈ [0, 1]. To show U ′`(p) <

US′(p) for all p, suppose by contradiction that US′(p) ≤ U ′`(p) for some p. Note that

US(0) =
uL` λ−2c

λ+2ρ
< uL` = U`(0). Hence, US′(p) ≤ U ′`(p) and the linearity of these functions

imply US(p) < U`(p) ≤ U(p) for all p, which is a contradiction. The other inequalities

are proven similarly.

Part (c) is obtained from straightforward algebra.

The following lemma summarizes the properties of the own-biased strategy:

Lemma 5. (a) V own(p) and V own(p) are continuously differentiable and convex on (0, 1);

(b) V own(p) is strictly convex and V own(p) > U`(p) on (p∗, 1], and V own(p) is strictly

convex and V own(p) > Ur(p) on [0, p∗). Vown(p) > U(p) for p ∈ (p∗, p∗).

(c) If p∗, p∗ ∈ (0, 1), they satisfy

U`(p
∗) = UFA(p∗), and Ur(p

∗) = UFA(p∗). (B.1)

(d) Suppose (EXP) holds. Then, 0 < p∗ < p∗ < 1, V own(p) < UFA(p) for p ∈ (p∗, 1),

V own(p) < UFA(p) for p ∈ (0, p∗), and Vown(p) = U(p) > UFA(p) for p 6∈ [p∗, p∗].

(e) If (EXP) is violated, then Vown(p) = U(p) for all p ∈ [0, 1].

Proof. Parts (a)-(c) follow from straightforward algebra. For part (d), note that (EXP)

together with part (c) and Lemma 4.(b) imply 0 < p∗ < p̂ < p∗ < 1 and UFA(p) < U(p)

for p /∈
[
p∗, p∗

]
. This implies Vown(p) = U(p) > UFA(p) for p 6∈ [p∗, p∗]. To show that

V own(p) < UFA(p) for p ∈ (p∗, 1), note that V own(p∗) = U`(p
∗) = UFA(p∗) from part

(c), and V own(1) = UFA(1) from (A11). Since UFA(p) is linear by Lemma 4.(b) and

V own(p) is strictly convex (p∗, 1] by part (b), this implies implies that V own(p) < UFA(p)

for p ∈ (p∗, 1). V own(p) < UFA(p) for p ∈ (0, p∗) is proven similarly.

Part (e) holds because by part (c), p∗ > p∗ if (EXP) is violated.
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We next observe several properties of Vopp(p).

Lemma 6. (a) Vopp(p) is continuously differentiable and strictly convex on (0, 1), and

Vopp(p) ≥ US(p) for all p ∈ [0, 1] with strict inequality for p 6= p∗.

(b) Then, Vopp(p) ≤ UFA(p) for all p ∈ [0, 1], with equality if and only if p ∈ {0, 1}.

Proof. Part (a) follows from straightforward algebra. For part (b), again by straight-

forward algebra we get UFA(0) = V opp(0) = Vopp(0) and UFA(1) = V opp(0) = Vopp(1).

Since UFA(p) is linear and Vopp is strictly convex, this implies Vopp(p) < UFA(p) for all

p ∈ (0, 1).

We are now ready to prove Proposition 8. For the reader’s convenience, we restate the

proposition.

Proposition (Structure of VEnv). (a) If (EXP) holds and Vown(p∗) ≥ Vopp(p
∗), then

there exists a unique p̌ ∈
(
p∗, p∗

)
such that V own(p̌) = V own(p̌) and

VEnv(p) = Vown(p) =

V own(p), if p < p̌,

V own(p), if p ≥ p̌.

(b) If (EXP) holds and Vown(p∗) < Vopp(p
∗), then p∗ ∈ (p∗, p∗), and there exist a

unique p ∈ (p∗, p∗) such that Vown(p) = Vopp(p), and a unique p ∈ (p∗, p∗) such

that Vown(p) = Vopp(p) and

VEnv(p) =


V own(p), if p < p,

Vopp(p), if p ∈ [p, p],

V own(p), if p > p.

Proof. Part (a): We first prove that Vown(p) ≥ Vopp(p) for all p ∈ [0, 1]. Since Vown(p) ≥
UFA(p) > Vopp(p) for p 6∈ [p∗, p∗], it suffices to show Vown(p) ≥ Vopp(p) for p ∈ [p∗, p∗].

To this end, suppose first p∗ > p∗ and consider p ∈ [p∗, p∗] so that Vopp(p) = V opp(p).

Recall from Lemmas 5 and 6 that V own(p∗) = UFA(p∗) > Vopp(p
∗). Since Vopp(·) ≥ US(·),

by the Crossing Lemma 2, V own can cross Vopp = V opp(p) only from above on [p∗, p∗).

If V own(p∗) ≥ V opp(p
∗), by the Crossing Lemma 2, V opp(p) < V own(p) ≤ Vown(p) for

all p ∈ [p∗, p∗]. If V own(p∗) < V opp(p
∗), then V own(p∗) = Vown(p∗) ≥ V opp(p

∗). Since

both V own(p) and V opp(p
∗) satisfy (A7), we must have V opp(p) ≤ V own(p) ≤ Vown(p) for

all p ∈ [p∗, p∗]. Either way, we have proven that Vopp(p) = V opp(p) ≤ Vown(p) for all

p ∈ [p∗, p∗]. A symmetric argument proves that Vopp(p) ≤ Vown(p) for all p ∈ [p∗, p∗] in

case p∗ < p∗.

So far, we have shown that Vown(p) ≥ Vopp(p) for all p ∈ [0, 1]. Recall from Lemma

5 that V own(p∗) = UFA(p∗) > V own(p∗) and V own(p∗) = UFA(p∗) > V own(p∗). By the
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intermediate value theorem, there exists p̌ ∈
(
p∗, p∗

)
where V own(p̌) = V own(p̌). For any p

we have Vown(p) ≥ Vopp(p) and Vopp(p) ≥ US(p) and hence Vown(p̌) ≥ US(p̌). The Crossing

Lemma 2 then implies that V own cannot cross V own from below at p̌.1 This means that

the intersection point p̌ is unique and the structure stated in part (a) obtains.

Part (b): We first prove that p∗ ∈
(
p∗, p∗

)
. By Lemma 5, Vown(p) ≥ U(p) for all

p ∈ [0, 1]. This implies Vopp(p
∗) > U(p∗), and since Vopp(p

∗) = US(p∗) < UFA(p∗), and

since by Lemma 5.(d) UFA(p) ≤ U(p) for p /∈
(
p∗, p∗

)
, we must have p∗ ∈

(
p∗, p∗

)
.

Next, by Lemma 6.(b), Vopp(p
∗) < UFA(p∗) = V own(p∗). Therefore, Vopp(p) and V own(p)

intersect at some p ∈
(
p∗, p∗

)
and by the Crossing Lemma 2, the intersection is unique

since Vopp(p) > US(p) for p ∈
(
p∗, p∗

)
by Lemma 6.(a). Moreover, for p < p∗, we have

Vopp(p) > V own(p) since both satisfy (A7), and hence V own(p) < V own(p) for all p ∈
(
p∗, p

)
.

This proves the result for p ≤ p∗. For p > p∗ the arguments are symmetric.

B.1.6 Proof of Proposition 9

Proof. If (EXP) is violated, VEnv(p) = U(p) since p∗ > p∗ by Proposition 7. Moreover

Proposition 7 shows that V ∗(p) = U(p) = VEnv(p) in this case. Similarly, if (EXP)

is satisfied, by Lemma 1 and Proposition 8, VEnv(p) = U(p) for all p /∈ (p∗, p∗) and

Proposition 7 shows that V ∗(p) = U(p) = VEnv(p) for p /∈ (p∗, p∗).

It remains to verify V ∗(p) = VEnv(p) for p ∈ (p∗, p∗) when EXP is satisfied. In the

remainder of this proof we write V (p) = VEnv(p). Theorem III.4.11 in Bardi and Capuzzo-

Dolcetta (1997) characterizes the value function of a dynamic programming problem with

an optimal stopping decision as in (A1) as the (unique) viscosity solution of the HJB

equation.2 For all p ∈ (0, 1) where V (p) is differentiable, this requires that V (p) satisfy

(A4).

Consider points of differentiability p ∈
(
p∗, p∗

)
. From (A11) and (A12), we obtain that

V own and V own are strictly convex on (p∗, p∗). Smooth pasting at p∗ and p∗, respectively,

implies that V own(p) > U`(p) and V own(p) > Ur(p), and therefore V (p) ≥ Vown(p) > U(p)

for p ∈ (p∗, p∗). This implies that (A4) is equivalent to (A6) for all p ∈
(
p∗, p∗

)
. Since

V (p) satisfies (A7) or (A8) at points of differentiability, and V (p) ≥ Vopp(p) ≥ US(p), the

Unimprovability Lemma 3 implies that V (p) satisfies (A6). Since Vopp is strictly convex

by Lemma 6.(a), Vopp(p) > US(p), and hence Lemma 3 implies that the optimal policy

is unique at all points where V (p) is differentiable except p∗. At p∗, the HJB equation is

satisfied for any α ∈ [0, 1] but α = 1/2 is the only maximizer that defines an admissible

policy.

1V own and V own could be equal to US at p̌ which means that two branches are tangent. However, the
convexity of both branches and the fact that Vown(p) ≥ US(p) for all p, means that V own cannot cross
V own from below at any point of intersection. Therefore p̌ is unique.

2To formally apply their theorem, we have to use Pt as a second state-variable and define a value
function v(p, P ) = PV (p). Since v is continuously differentiable in P , it is straightforward to apply the
result directly to V (p).
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We have shown that V (p) satisfies (A4) for all points of differentiability. For V (p) to

be a viscosity solution it remains to show that for all points of non-differentiability,

max {−c− ρV (p) + F (p, V (p), z), U(p)− V (p)} ≤ 0, (B.2)

for all z ∈
[
V ′−(p), V ′+(p)

]
; and the opposite inequality holds for all z ∈

[
V ′+(p), V ′−(p)

]
,

where V ′−(p) denotes the left derivative at p, and V ′+(p) denotes the right derivative at p.

By Proposition 8, non-differentiability occurs at p̌ if (EXP) holds and Vown(p∗) ≥ Vopp(p
∗);

and at p and p if (EXP) holds and Vown(p∗) < Vopp(p
∗). Since V (p) ≥ US(p), the Crossing

Lemma 2 implies that V (p) has convex kinks at all these points so that V ′−(p) ≤ V ′+(p).

Therefore it suffices to check (B.2) for all z ∈
[
V ′−(p), V ′+(p)

]
. Fα is linear in α (see (A5)),

so it suffices to consider α ∈ {0, 1}. For α = 1 we have F1(p, V (p), z) ≤ F1(p, V (p), V ′−(p))

and for α = 0 we have F0(p, V (p), z) ≤ F0(p, V (p), V ′+(p)). Therefore if U(p) ≤ V (p),

which holds for our candidate solution by construction, then

c+ ρV (p) ≥ max
{
F1(p, V (p), V ′−(p)), F0(p, V (p), V ′+(p))

}
(B.3)

implies that (B.2) holds for all for z ∈
[
V ′−(p), V ′+(p)

]
. We distinguish two cases.

Case A: (EXP) is satisfied and Vown(p∗) ≥ Vopp(p
∗). Consider p = p̌. (B.3) becomes

c+ ρV own(p̌) = c+ ρV own(p̌) ≥ max
{
F1(p̌, V own(p̌), V ′own(p̌)), F0(p̌, V own(p̌), V

′
own(p̌))

}
.

By the Unimprovability Lemma 3, this holds with equality since V own(p) satisfies (A8) and

V own(p) satisfies (A7) at p̌. As we have argued earlier, Vown(p) > U(p) for all p ∈
(
p∗, p∗

)
and hence V (p̌) > U(p̌). (B.2) is thus satisfied at p̌.

Case B: (EXP) is satisfied and Vown(p∗) < Vopp(p
∗). The proof is similar to Case B.

We have thus shown that V (p) is a viscosity solution of (A4) which is sufficient for

V (p) to be the value function of problem (A1).

B.2 Proof of Proposition 1

Proof. We begin by deriving formulas for the waiting time. Suppose the DM has belief p

and seeks L-evidence (α = 0) until her belief reaches q > p, then from (1) we obtain that

the time it takes to reach q in the absence of an L-signal is

T (q, p;α = 0) :=
1

λ
log

(
q

1− q
1− p
p

)
.

This implies that τ(p) satisfies

τ(p) = τ(p;α = 0, q) := (1− p)
∫ T (q,p)

0

sλe−λsds+
(
p+ (1− p)e−λT (q,p)

)
(T (q, p) + τ(q))
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=
1

λ

[
q − p
q

+ p log

(
q

1− q
1− p
p

)]
+
p

q
τ(q)

Similarly, if the DM has belief p and seeks R-evidence (α = 1) until her belief reaches

q < p, then the time it takes to reach q in the absence of an L-signal is

T (q, p;α = 1) :=
1

λ
log

(
p

1− p
1− q
q

)
.

This implies that τ(p) satisfies

τ(p) = τ(p;α = 1, q) :=
1

λ

[
p− q
1− q

+ (1− p) log

(
p

1− p
1− q
q

)]
+

1− p
1− q

τ(q).

Direct computation shows concavity of the waiting time for α = 0 or α = 1, respectively:

τ ′′(p;α = 0, q) = − 1

λ (1− p)2 p
< 0, and τ ′′(p;α = 1, q) = − 1

λ (1− p) p2
< 0.

(a) Equipped with these formulas, we prove part (a) of the proposition in several steps.

Step 1. Suppose c ∈ (0, c). Then, τ(p) is concave on
(
p, p
)
.

Proof. At p∗, the DM uses α = 1/2. Hence the arrival rate of a signal is λ/2 and the

expected delay is given by the expectation of the exponential distribution:

τ(p∗) =
2

λ
.

Hence

τ ′(p) =


1
λ

[
1
p
− 1

1−p∗ − log
(

p
1−p

1−p∗
p∗

)]
if p > p∗,

1
λ

[
1
p∗
− 1

1−p + log
(

p∗

1−p∗
1−p
p

)]
if p < p∗.

This implies τ(p∗+) = τ(p∗−), i.e., τ(p) is differentiable on
(
p, p
)
. Since we have shown

that τ(p) is concave for p > p∗ and p < p∗, it is therefore concave on the whole interval

(p, p).

In the sequel, we let p = p = p̌ if c ∈ [c, c). Of course, p and p are well defined if

c ∈ (0, c).

Step 2. Suppose c ∈ (0, c). τ(·) is concave on [p, p∗) and on (p∗, p]. For ρ > 0 suf-

ficiently small, τ(·) is strictly decreasing on [max{p, p∗}, p∗) and strictly increasing on

(p∗,min{p, p∗}].

Proof. Given the symmetry, it suffices to prove the result for p ∈ [p, p∗). For this region,

the DM employs the own-biased strategy, i.e., she is seeking L-evidence. Hence, the
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expected delay is given by τ(p) = τ(p;α = 0, p∗) which we have shown to be concave.

Differentiating τ(p;α = 0, p∗) with respect to p we get

τ ′(p) =
1

λ

[
− 1

p∗(ρ)
+ log z(ρ)− 1

1− p

]
. (B.4)

where we define z(ρ) :=
(

p∗(ρ)
1−p∗(ρ)

)(
1−p
p

)
and write p∗(ρ) as a function ρ. We prove that

there exists ρ2 such that for all ρ < ρ2, τ ′(p) < 0 for p ∈ [max{p, p∗}, p∗). To this end,

consider p = max{p, p∗}. For ρ sufficiently small, p > p∗(0) + ε for some ε > 0 and hence

τ ′(p) <
1

λ
[−χ+ log z] ,

where χ = − 1
p∗(0)
− 1

1−p∗(0)
< 2, where we write p∗(ρ) as a function of ρ (evaluated at 0).

Therefore it suffices to show that limρ→0 log z(ρ) ≤ 2.

Note that V own(p) ≥ V opp(p) at that p. We use this condition to derive an upper

bound for z. We can use our closed form solutions for V own(p) and V opp(p) to rewrite this

condition:

−kp+u
L
` y − k
y + 1

(1−p)+y(k + uRr )

y + 1
p(z(ρ))−

1
y ≥ −k(1−p)+u

R
r y − k
y + 1

p+
y

2 + y

y(k + uL` )

y + 1

(
1− p
p

) 1
y

(1−p),

where k := c/ρ, y := λ/ρ. Simplifying, we get

(z(ρ))−
1
y ≥ (1− φ)k + uRr − φuL`

k + uRr
+

y

2 + y

k + uL`
k + uRr

φ
1+y
y ,

where φ = (1− p)/p. We define φ∗ := (1− p∗)/p∗ = k+uRr
k+uL`

, and rewrite the condition:

(z(ρ))−
1
y ≥ 1− φ

φ∗
+

y

2 + y

φ

φ∗
φ

1
y =: g(φ).

g(φ) is convex and is minimized at φ∗∗ =
(

2+y
1+y

)y
. As ρ→ 0, we have φ∗ → 1 and φ∗∗ → e.

Therefore, for ρ > 0 sufficiently small, g′(φ) ≤ 0, for any φ ≤ φ∗. This implies that

(z(ρ))−
1
y ≥ g(φ) ≥ g(φ∗) =

(
y

2 + y

)
(φ∗)

1
y ,

⇐⇒ z(ρ) ≤
(

1 +
2

y

)y
1

φ∗
.

Since φ∗ → 1, the bound for (z(ρ)) converges to e2 and hence limρ→0 log z(ρ) ≤ 2 as

needed for the proof. Therefore τ ′(max{p, p∗}) < 0 and since τ(p) is concave for p ∈
[max{p, p∗}, p∗), we have τ ′(p) < 0 for p ∈ [max{p, p∗}, p∗).

Step 3. Suppose c ∈ (0, c). Then, for ρ sufficiently small, τ(p−) ≥ τ(p+) and τ(p−) ≤
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τ(p
+

).

Proof. As before, we prove only the first statement (with the second obtained by a sym-

metric argument). Suppose ρ = 0. If at p, the DM follows the own-biased strategy, she

enjoys the payoff of

[
puRr + (1− p)uL`

]
− p

[
uRr − uR`

]
− c

∫ T
∗
(p)

0

(1−H(t)))dt. (B.5)

where H is the distribution of the time at which the DM makes a decision.

Suppose instead that the DM follows the opposite-biased strategy. In this case her

expected payoff (for r = 0) is given by

[
puRr + (1− p)uL`

]
− c

∫ ∞
0

(1−G(t)))dt. (B.6)

where G is the distribution of time at which the DM makes a decision.

Since at p, the DM is indifferent between both strategies we must have

∫ T
∗
(p)

0

(1−H(t)))dt <

∫ ∞
0

(1−G(t)))dt,

i.e., the DM will take a strictly longer time for decision if she chooses a opposite-biased

strategy instead. This proves that τ(p+) < τ(p−) for ρ =. By continuity the result

extends to ρ in a neighborhood of zero.

Suppose c ∈ (0, c). Then, p < p∗ < p. Hence, combining Steps 1-3 implies that, τ(p)

is quasi-concave in p and attains its maximum in [p, p].

The case c ∈ [c, c) requires a different proof depending on whether ∆L = ∆R or

∆L 6= ∆R, where ∆L = uL` − uLr and ∆R = uRr − uR` . We begin with the case ∆L 6= ∆R.

Step 4. Fix uωx , λ, and c > 0 such that c ∈ [c, c) for all ρ in a neighborhood of zero. If

∆L 6= ∆R, then there exists ρ4 > 0 such that for all ρ < ρ4, p̌ 6= 1/2 and τ(p̌−) < τ(p̌+)

if p̌ < 1/2, and τ(p̌−) > τ(p̌+) if p̌ > 1/2.

Proof. We first show several results for the case that ρ = 0, and then prove Step 4 by

continuity.

At p̌ we have V own(p̌) = V own(p̌). The explicit expression of the value functions for

c = 0 are:

V own(p) = puRr + (1− p)uL` +
c

λ

(
log

(
p

1− p
1− p∗

p∗

)
p− 1

)
,

V own(p) = puRr + (1− p)uL` +
c

λ

(
log

(
1− p
p

p∗

1− p∗

)
(1− p)− 1

)
.

10



Equating these expressions we get

log

(
p∗

1− p∗
1− p̌
p̌

)
p̌ = log

(
p̌

1− p̌
1− p∗

p∗

)
(1− p̌) (B.7)

Claim 1. Let ρ = 0 and fix uωx , λ, and c > 0 such that c ∈ [c, c). Then
p̌ < 1/2 if ∆R > ∆L,

p̌ = 1/2 if ∆R = ∆L,

p̌ > 1/2 if ∆R < ∆L.

Proof of Claim 1. Substituting p∗ and p∗ in (B.7) we obtain the following condition for p̌:

p̌ log

(
∆Lλ− c

c

1− p̌
p̌

)
= (1− p̌) log

(
p̌

1− p̌
∆Rλ− c

c

)
. (B.8)

Proposition 8.(a) shows that this condition has a unique solution if c ∈ [c, c]. (B.8)

implies that p̌ = 1/2 if and only if ∆L = ∆R. Next consider ∆R > ∆L. The argument for

∆L > ∆R is symmetric. From Proposition 3 we have that

∂p̌

∂∆L
> 0 and

∂p̌

∂∆R
< 0.

This implies that p̌ < 1/2 if ∆R > ∆L. To see this consider two separate cases. In

the first case c ≤ c(∆L,∆R = ∆L), in this case for any ∆̂R ∈ [∆L,∆R], we have c ∈
[c(∆L, ∆̂R), c(∆L, ∆̂R)]. Since p̌ = 1/2 if ∆̂R = ∆L, ∂p̌

∂∆R < 0 implies that p̌ < 1/2 if ∆R >

∆L. In the second case c > c(∆L,∆R = ∆L). Then we set ∆̂R so that c = c(∆L, ∆̂R).

If c = c(∆L, ∆̂R), then p̌ = p∗ = p∗ = c

∆̂Rλ
< 1/2, where the inequality is obtained as

follows:

c = c ⇐⇒ c =
λ∆̂R∆L

∆̂R + ∆L
⇐⇒ c

∆̂Rλ
=

∆L

∆̂R + ∆L
< 1/2.

Hence, as before ∂p̌
∂∆R < 0 implies that p̌ < 1/2 for the original values ∆R > ∆L. This

completes the proof of the claim.

Now we prove Step 4 for ρ = 0.

Lemma 7. Suppose ρ = 0 and fix uωx , λ, and c > 0, such that c ∈ [c, c). Then τ(p̌−) <

τ(p̌+) if p̌ < 1/2; τ(p̌−) = τ(p̌+) if p̌ = 1/2; and τ(p̌−) > τ(p̌+) if p̌ > 1/2.

Proof. We want to determine the sign of τ(p̌+)− τ(p̌−). Since τ(p∗) = τ(p∗) = 0, we have

τ(p) = τ(p;α = 0, p∗) =
1

λ

[
1− p

p∗
+ p log

(
p∗

1− p∗
1− p
p

)]
, if p > p̌

11



τ(p) = τ(p;α = 1, p∗) =
1

λ

[
1− 1− p

1− p∗
+ (1− p) log

(
p

1− p
1− p∗

p∗

)]
, if p < p̌

Substituting (B.7) in τ(p̌+) we get

τ(p̌+)− τ(p̌−) ≥ 0,

⇐⇒ 1− p̌
p̌

p∗

1− p∗
≥ 1, (B.9)

and the second line holds with strict inequality if and only if τ has a jump at p̌. We have

p∗ =
c

∆Rλ
, and p∗ =

∆Lλ− c
∆Lλ

.

Hence (B.9) can be written as (we omit the arguments λ and c of ξ(·)):

ξ(∆L,∆R) :=
1− p̌
p̌

∆L∆Rλ−∆Rc

∆L∆Rλ−∆Lc
≥ 1 (B.10)

The proof of the lemma amounts to showing that ξ(∆L,∆R) > 1 whenever p̌ < 1/2 and

ξ(∆L,∆R) < 1 whenever p̌ > 1/2. Claim 1 implies that to show the Lemma, it suffices to

show that ξ(∆L,∆R) > 1 if ∆R > ∆L; ξ(∆L,∆R) = 1 if ∆R = ∆L; and ξ(∆L,∆R) < 1 if

∆R < ∆L.

Note first that inserting ∆L = ∆R and p̌ = 1/2 in (B.10) yields ξ(∆L,∆L) = 1. To

establish the result for ∆R > ∆L, we write ξ(∆L,∆R) as follows

ξ(∆L,∆R) = ξ(∆L, ∆̂R) +

∫ ∆R

∆̂R

∂ξ(∆L, z)

∂∆R
dz, (B.11)

and show the following claim (a symmetric argument holds for ∆L > ∆R):

Claim 2. Suppose ∆R > ∆L and c < c(∆L,∆R).

(a) Then there exists ∆̂R ∈ [∆L,∆R] such that ξ(∆L, ∆̂R) = 1 and c ≤ c(∆L, z) for all

z ∈ [∆̂R,∆R],

(b) and ∂ξ(∆L,z)
∂∆R > 0 for all z ∈ (∆̂R,∆R].

Claim 2, together with (B.11), implies that ξ(∆L,∆R) > 1 if ∆R > ∆L which com-

pletes the proof of the Lemma.

Proof of Claim 2. For part (a) note that:

c ≤ c(∆L, z) ⇐⇒ c ≤ λz∆L

z + ∆L

We distinguish two cases. First, suppose that ∆Lλ/2 ≥ c, in this case c ≤ c(∆L, z) for all

z ∈ [∆L,∆R] and ξ(∆L,∆L) = 1. Hence we can set ∆̂R = ∆L.

12



Second suppose that ∆Lλ/2 < c. In this case we set ∆̂R = c∆L/(λ∆L − c), which is

equivalent to c = c(∆L, ∆̂R). This implies c ≤ c(∆L, z) for all z ∈ [∆L, ∆̂R]. Moreover,

p̌(∆L, ∆̂R) = p∗(∆L, ∆̂R) = p∗(∆L, ∆̂R) = c

∆̂Rλ
and we have

ξ(∆L, ∆̂R) =
∆̂Rλ− c

c

∆L∆̂Rλ− ∆̂Rc

∆L∆̂Rλ−∆Lc
= ∆̂R∆Lλ− c

c∆L
= 1

This completes the proof of part (a) of the claim.

For part (b) we have (where we sometimes write p̌(∆L,∆R) to indicate the dependence

on the parameters):

∂ξ(∆L, z)

∂∆R
> 0

⇐⇒ − 1

(p̌)2

∂p̌(∆L, z)

∂∆R

∆Lzλ− zc
z∆Lλ−∆Lc

+
1− p̌
p̌

(
∆Lλ− c

) (
∆Lzλ−∆Lc

)
− z

(
∆Lλ− c

)
∆Lλ

(z∆Lλ−∆Lc)2 > 0

⇐⇒ ∂p̌(∆L, z)

∂∆R
< − p̌ (1− p̌) c

z (zλ− c)
(B.12)

In this derivation we have used that ∆Lλ− c > 0 and zλ− c > 0 if z ∈ [∆̂R,∆R]. To see

this, note that z ∈ [∆̂R,∆R] implies

c ≤ c(∆L, z) ⇐⇒ λz − c ≥ zc

∆L
≥ c. (B.13)

Similarly, we obtain ∆Lλ− c > 0.

To show that the last line in (B.12) holds, we compute the partial derivative of p̌ using

the implicit function theorem. (B.8) can be rearranged to:

log

(
p̌

1− p̌

)
+ p̌ log

(
c

∆Lλ− c

)
− (1− p̌) log

(
c

∆Rλ− c

)
= 0.

Therefore we have:

∂p̌(∆L, z)

∂∆R
= −

(1− p̌) λ
(zλ−c)

1
p̌(1−p̌) + log

(
c

∆Lλ−c
c

zλ−c

) < 0

The inequality (which follows from Proposition 3) implies that the denominator is positive.

Substituting the derivative in (B.12) we have

1

(1− p̌)
+ p̌ log

(
c

∆Lλ− c
c

zλ− c

)
<
λz

c
(B.14)

Where we have used that zλ−c > 0 if c ≤ c, and that the denominator of ∂p̌(∆L, z)/∂∆R
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is positive as noted before.

In (B.14) we have 1/(1− p̌) ≤ 2 since p̌(∆L, z) ≤ 1/2 if z ∈ [∆̂R,∆R], and the LHS is

greater or equal 2, which is seen as follows:

c < c ⇐⇒ c <
λz∆L

z + ∆L

(z≥∆L)
=⇒ c <

λzz

z + z
=
λz

2
⇐⇒ λz

c
> 2.

Hence, a sufficient condition for (B.14) is

log

(
c

∆Lλ− c
c

zλ− c

)
≤ 0.

Remember that he have noted in (B.13) that

zλ− c ≥ c
z

∆L
> 0

and similarly we obtain

∆Lλ− c ≥ c
∆L

z
> 0

with strict inequalities if z > ∆̂R (which implies c < c(∆L, z)). Multiplying these two

inequalities we get

(∆Lλ− c)(zλ− c) ≥ c2 ⇐⇒ log

(
c

∆Lλ− c
c

∆Rλ− c

)
≤ 0

with strict inequalities if z > ∆̂R. Remember that Condition (B.14) is equivalent to
∂ξ(∆L,z)
∂∆R > 0 if z ∈ [∆̂R,∆R] and we have now shown that a sufficient condition for (B.14)

holds if z > ∆̂R. This completes to proof of part (b) of the claim.

This completes the proof of the Lemma.

To finish the proof of Step 4, we argue by continuity. Suppose ∆R > ∆L. We have

assumed that for ρ sufficiently small c ∈ [c, c). Moreover, note that if c > 0, p∗ > 0 and

p∗ < 1. The waiting time for the R-biased strategy depends on ρ only through p∗(ρ). We

have for p ∈ (0, p∗(ρ)):

|τ(p;α = 0, p∗(ρ))− τ(p;α = 0, p∗(0))|

=
1

λ

∣∣∣∣p∗(ρ)− p∗(0)

p∗(ρ)p∗(0)
p+ p log

(
p∗(ρ)

1− p∗(ρ)

1− p∗(0)

p∗(0)

)∣∣∣∣
≤1

λ

[∣∣∣∣p∗(ρ)− p∗(0)

p∗(ρ)p∗(0)

∣∣∣∣+

∣∣∣∣log

(
p∗(ρ)

1− p∗(ρ)

1− p∗(0)

p∗(0)

)∣∣∣∣] −→ 0 (as ρ→ 0).

Since the last line is independent of p, we have uniform convergence (uniform in p) of

τ(·;α = 0, p∗(ρ)) as ρ → 0. Similarly, we obtain uniform converges of τ(·;α = 1, p∗(ρ))
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as ρ → 0. Moreover p̌(ρ) → p̌(0). Hence, there exists ε > 0 such that p̌(0) + ε < 1/2,

and ρ4 > 0 such that for any ρ < ρ4, |p̌(ρ)− p̌(0)| < 0, and τ(p;α = 0, p∗(ρ)) > τ(p;α =

1, p∗(ρ)) for all p ∈ Bε(p̌(0)) (by uniform convergence of the two functions, and the fact

that for ρ = 0 there is a jump at p̌(0)). This shows that for ρ < ρ4, τ(p̌+) > τ(p̌−). A

symmetric argument shows Step 4 for ∆L > ∆R.

Suppose c ∈ (c, c). Let p̌(0) := limρ→0 p̌(ρ). There are two cases. Suppose first

p̌(0) 6= 1/2, which is equivalent ot ∆L 6= ∆R. We consider the case where p̌(0) < 1/2

(which is equivalent to ∆L < ∆R). Since p∗ → 1/2 as ρ → 0, for ρ sufficiently small,

we have p̌(ρ) < p∗. Then, Step 2 implies that for ρ < ρ2, τ(·) is strictly increasing

on (p∗, p̌(ρ)), and that τ(·) is concave on (p̌(ρ), p∗). Meanwhile, Step 4 implies that

τ(p̌(ρ)−) < τ(p̌(ρ)+). Hence, we have the quasi-concavity of τ . The case of p̌(0) > 1/2 is

symmetric.

Next, suppose that p̌(0) = 1/2 which is equivalent to ∆L = ∆R. In this case Step 2

implies that

∂τ(1/2, α = 1, p∗(0))

∂p
> 0, and

∂τ(1/2, α = 0, p∗(0))

∂p
< 0.

We can show that ∂τ(p, α = 1, p∗(ρ))/∂p and ∂τ(p, α = 0, p∗(ρ))/∂p are uniformly con-

tinuous in ρ.3 Since p̌(ρ)→ 1/2, this implies that

∂τ(p̌(ρ), α = 1, p∗(ρ))

∂p
> 0, and

∂τ(p̌(ρ), α = 0, p∗(ρ))

∂p
< 0.

for ρ sufficienctly close to zero. Together with concavity for p < p̌(ρ) and p > p̌(ρ) this

implies that τ(p) is concave on [p∗, p∗]. This completes the proof of part (a).

(b) Consider p > p̌ if c ∈ [c, c), so that the DM uses α = 0 according to the opposite-

biased strategy. Time it takes to reach p∗ in the absence of a breakthrough is

T
∗

= T (p∗, p;α = 0) =
1

λ
log

(
p∗

p∗ − p∗
1− p
p

)
.

The probability of a mistake is therefore

(1− p)
(

1− e−λT
∗)

=
(1− p∗) (p∗ − p)

p∗(1− p)
.

3To see this note that∣∣∣∣∂τ(p, α = 0, p∗(ρ))

∂p
− ∂τ(p, α = 0, p∗(0))

∂p

∣∣∣∣ =

∣∣∣∣ 1λ
[
p∗(ρ)− p∗(0)

p∗(ρ)p∗(0)
+ log

(
p∗(ρ)

1− p∗(ρ)

1− p∗(0)

p∗(0)

)]∣∣∣∣
which is independent of p and converges to zero as ρ→ 0.
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Differentiating this with respect to p, we get

− p∗ − p
p∗(1− p)

< 0.

This proves that the probability of a mistake decreases in the distance to p∗ for p > p̌.

THe proofs for the remaining cases are similar.

B.3 Proof of Proposition 2

Proof. (a) By (B.1), p∗ and p∗ are given by the intersections of U(p) and UFA(p). Since

U(p) is independent of ρ and c, and UFA(p) is strictly decreasing in both parameters, the

experimentation region expands as ρ or c fall. As (ρ, c)→ (0, 0), we have UFA(p)→ U(p)

for p ∈ {0, 1}, hence the experimentation region converges to (0, 1).

(b) The dependence of p∗ and p∗ on uR` and uLr is straightforward from the expressions

for the cutoffs in (A9) and (A10).

(c) By (B.1), p∗ is the intersection between U`(p) and UFA(p). The former is indepen-

dent of uRr and the latter is increasing in uRr . Hence ∂p∗/∂uRr < 0. Also by (B.1), p∗ is

the intersection between Ur(p) and UFA(p). We have

∂Ur(p)

∂uRr
= p >

λ

r + λ
p =

∂UFA(p)

∂uRr
.

This implies that ∂p∗/∂uRr < 0. The comparative statics with respect to uL` is derived

similarly.

B.4 Proof of Proposition 3

Proof. (a) We prove ∂p̌/∂uR` > 0; the other case follows from a symmetric argument.

Consider V own(p). Since the right branch of the own-biased value function is obtained from

a strategy that takes action ` only if a signal has been received, its value is independent

of uR` , as can be seen from (A12). On the other hand we have ∂V own(p)/∂uR` > 0 from

(A11). Therefore the point of intersection of V own and V own is increasing in uR` .

(b) It is clear from (A18) that c is decreasing in uR` and uLr . Therefore, it suffices to

consider the case that c < c. We prove that p → 0 monotonically as uR` → −∞. If a

opposite-biased region exists, p ∈ (p∗, p∗) is defined as the unique intersection between

V opp(p) and V own(p). Note that V opp(p) is independent of uR` since the opposite-biased

strategy never leads to a mistake. As in (a), we have ∂V own(p)/∂uR` > 0. Moreover,

Lemma 2 shows that V own(p) crosses V opp(p) from above at p. Since Vopp is independent

of uR` this implies that of p is monotonically increasing in uR` .

Since p is bounded from below, there exists q = limuR` →−∞
p < p∗. Suppose by
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contradiction that q > 0. Notice that, for each p ∈ [q, p∗], as uR` → −∞.

V own(p)→ λuRr pρ− λc(1− p)− cρ
(ρ+ λ) ρ

=: V ◦own(p),

where we used the fact that p∗/(1− p∗)→ 0 as uR` → −∞.

Note that the convergence is uniform on [q, p∗] since q > 0.4 Simple algebra yields

V ◦own(p∗) ≤ US(p∗), and V ◦′own(p) > US′(p). Since V ◦own(p) is linear in p, this implies that

V opp(q) ≥ US(q) > V ◦own(q) which is a contradiction and we must have q = 0. The proof

for p is essentially the same.

B.5 Proof of Proposition 4

Proof. (a) We have

∂c

∂ρ
= − uRr u

L
` − uR` uLr

(uRr + uL` )− (uR` + uLr )
,

and hence sgn (∂c/∂ρ) = sgn
(
uR` u

L
r − uRr uL`

)
. It is straightforward to verify that U(p̂) > 0

if and only if uRr u
L
` − uR` uLr > 0.

(b) Denoting Z(x) := (x+ 1)/
(

1 + (2x+ 1)
1
x

)
, we have

∂c

∂ρ
=

Z ′(ρ/λ)
(
uRr − uR`

)
− uRr if (λZ(ρ/λ)− ρ)

(
uRr − uL`

)
− λZ(ρ/λ)

(
uR` − uLr

)
< 0,

Z ′(ρ/λ)
(
uL` − uLr

)
− uL` if (λZ(r/λ)− ρ)

(
uRr − uL`

)
− λZ(ρ/λ)

(
uR` − uLr

)
> 0.

Consider the first case. Since Z ′(x) ∈
[
(1 + 3e2) / (1 + e2)

2
, 1/2

]
,

Z ′(ρ/λ)
(
uRr − uR`

)
− uRr <

1

2

(
uRr − uR`

)
− uRr = −1

2

(
uRr + uR`

)
,

which is negative if uRr >
∣∣uR` ∣∣. Conversely, if uR` is sufficiently negative Z ′(ρ/λ)

(
uRr − uR`

)
−

uRr > 0, which is equivalent to uR` /u
R
r < 1 − 1/Z ′(ρ/λ). A sufficient condition is

uR` /u
R
r < 1− 1/Z ′(0) ≈ −2.04. The argument for the second case is similar.

B.6 Proof of Proposition 5

Proof. Let Ft(p) be the distribution function of beliefs in the whole population at time

t. Denote the density, whenever it exists by ft(p). Denote by δt(p) = Ft(p) − F−t (p) the

mass at p if there is a mass point.

(a) To simplify notation, we set p = p = p̌ if c ≥ c. For part (a) we consider

the subpopulation of voters with prior beliefs in Pown = [p∗, p] ∪ [p, p∗]. Initially, these

4Recall from (A11) that V own(p)→∞ as p→ 0, hence the condition q > 0 is necessary here.
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voters consume own-biased news. If we consider the same subpopulation at later points

t > 0, then their beliefs either remain inside Pown, or they jump to pt = 0 after an L-

breakthrough. Therefore, for t > 0 we consider the subpopulation of voters with beliefs in

P0
own = Pown ∪ {0}. Within P0

own we consider the median belief for voters with pt > 1/2,

denoted mr
t and the median belief for voters with pt < 1/2, denoted by m`

t.

We first consider mr
t which is given by

mr
t = F−1

t

(
Ft(p) +

Ft(p
∗)− Ft(p)

2

)
We show that this is increasing in t whenever mr

t < p∗. All individuals inP0
own ∩ (1/2, 1]

consume R-biased news. This leads to two possible changes in their beliefs that effects

the median. First, for voters who receive breakthrough news the belief becomes 0 so

that they leave the set P0
own ∩ (1/2, 1]. Note that conditional on the state being L all

individuals who acquire information receive L-breakthroughs at rate λ. If mr
t < p∗,

all voters in P0
own ∩ (1/2, 1] below the median still acquire information but some voters

above the median have already stopped. Therefore, more voters below the median receive

breakthrough than above the median. This increases the median mr
t .

Second, absent a breakthrough the belief of a voter in P0
own ∩ (1/2, 1] drifts upwards.

The upward drift also increases the median. Hence, if mr
t < p∗, mr

t is increasing over

time. If mr
t = p∗, it remains constant for all t′ > t.

Next consider the subpopulation of individuals with beliefs in P0
own ∩ [0, 1/2). This

subpopulation is composed of (i) the voters who initially consume own-biased news and

have a prior p0 < 1/2, and (ii) voters who initially consume own-biased news and have a

prior of p > 1/2, but received breakthrough news at some time t′ ≤ t. The median belief

at time t of individuals with beliefs below 1/2 in this subset is given by

m`
t =

0, if Ft(0) ≥ δt(p
∗) + Ft(p)− Ft(p∗)

F−1
t

(
Ft(p)−

δt(0)+Ft(p)−F−t (p∗)
2

)
, otherwise.

m`
t is moved by two forces. First, individuals with p > 1/2 who receive breakthroughs

enter the population with p < 1/2, and since they have a belief p = 0 after the break-

through this reduces the median. Second, individuals with beliefs p < 1/2 who consume

own-biased news never receive breakthroughs if the true state is L. Therefore their beliefs

drift downwards which further decreases m`
t.

In summary we have shown that mr
t −m`

t is increasing which concludes the proof of

part (a).

Part (b) follows from similar arguments since all voters who consume any news choose

own-biased news by assumption. Therefore their belief dynamics as in case (a). The

remaining voters do not consume any news so that their beliefs remain constant and leave
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the median in the subpopulations above and below 1/2 unaffected.

The proof of part (c) is immediate from the definition of the opposite-biased strategy.

C Extensions

C.1 Discrete Time Foundation

Proof of Proposition 6. If the DM chooses an experiment with parameters a and b =

1 + λdt − a, then the posteriors are qR := p (λdt+ 1− a) / (pλdt+ (1− a)) when the

R-signal is received, and qL := p (a− λdt) / (a− pλdt) when an L-signal is received.

The unconditional probabilities of the signals are Prob [R-signal] = pλdt + (1 − a), and

Prob [L-signal] = a− pλdt. Hence the DM maximizes

max
a∈[λdt,1]

(pλdt+ (1− a)) Ṽ (qR) + (a− pλdt) Ṽ (qL) (C.1)

where Ṽ (q) = max
{
U(q), e−ρdtV (q)− c

}
and V (p) is the optimal value function. We

note that V (p) is weakly convex.5 Therefore the continuation value Ṽ (p) is also weakly

convex.

In the following, we fix an arbitrary weakly convex continuation value Ṽ and belief

p ∈ (0, 1). We show that (C.1) is maximized by α = λdt or α = 1. To do this, we rewrite

the objective in (C.1) for an arbitrary choice â ∈ [λdt, 1] in a way that can be bounded

by the value for α = λdt or α = 1.

So we fix any â ∈ [λdt, 1] and denote the implied posteriors by q̂R and q̂L. To rewrite

the objective in (C.1), we construct alternative payoff parameters ûωx so that the resulting

stopping payoffs satisfy Û`(q̂
L) = Ṽ (q̂L) and Û ′`(q̂

L) = Ṽ ′(q̂L), as well as Ûρ(q̂
R) = Ṽ (q̂R)

and Û ′r(q̂
R) = Ṽ ′(q̂R).6 Theses conditions yields:

ûRr := Ṽ (q̂R) + (1− q̂R)Ṽ ′(q̂R), ûR` := Ṽ (q̂R)− q̂RṼ ′(q̂R),

ûLr := Ṽ (q̂L) + (1− q̂L)Ṽ ′(q̂L), ûR` := Ṽ (q̂L)− q̂LṼ ′(q̂L).

By definition, Û(p) is tangent to Ṽ (p) at p = q̂L and at p = q̂R, and is everywhere

weakly below Ṽ (p), given the convexity of Ṽ (p).

5To see this, note that the expected value of a fixed strategy (i.e. a mapping that specifies the attention
choice and action for each history) is linear in the prior belief. The value function is therefore the upper
envelope of a family of linear functions, which implies convexity.

6We use the notation Û`(p) := pûR` + (1 − p)ûR` , Ûr(p) := pûRr + (1 − p)ûRr , and Û(p) :=

max{Û`(p), Ûr(p)}.
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The objective in (C.1) for â can be rearranged and bounded as follows:

(pλdt+ (1− â)) Ṽ (q̂R) + (â− pλdt) Ṽ (q̂L)

= (pλdt+ (1− â)) Û(q̂R) + (â− pλdt) Û(q̂L)

=p(1 + λdt− â)ûRr + (1− p)(1− â)ûLr + p(a− λdt)ûR` + (1− p)âûL`
≤ max

a∈{λdt,1}
p(1 + λdt− a)ûRr + (1− p)(1− a)ûLr + p(a− λdt)ûR` + (1− p)aûL`

= (pλdt+ (1− â∗)) Û(q̂R∗) + (â∗ − pλdt) Û(q̂L
∗
)

≤ (pλdt+ (1− â∗)) Ṽ (q̂R∗) + (â∗ − pλdt) Ṽ (q̂L
∗
).

In the second line, we have replaced Ṽ by Û . Writing this out in the third line, we see that

the expression is linear in a. Therefore, maximizing over a ∈ {λdt, 1}, we get a weakly

higher value. In the fifth line â∗ denotes a maximizer from the forth line and q̂ω∗ denotes

the corresponding posterior beliefs. The last inequality follows from the fact that Ṽ is

weakly above Û . This shows that the optimal a can be found in {λdt, 1}.

C.2 Non-Exclusivity of Attention

The proofs of our main results only require minor modifications. One important change

is that the full attention strategy has to be defined using α = β = α. Without this

modification, Lemmas 1 and 4–6 are no longer valid. We also have to replace V0 and V1

by solutions to c + ρV (p) = Fα(p, V (p), V ′(p)) for α = α and α = α, respectively. The

value of the stationary strategy US(p) is unchanged as discussed in the main text. The

crucial Lemmas 2 and 3 continue to hold without modification.

Explicit expressions for the boundaries of the experimentation region and the absorb-

ing point p∗ are now given by

p∗ =
uL` ρ+ c

ρ (uL` − uR` ) + (uRr − uR` )λα
,

p∗ =

(
uL` − uLr

)
λα− uLr ρ− c

ρ (uRr − uLr ) + (uL` − uLr )λα
,

p∗ =

(
uL` ρ+ c

)
(uRr ρ+ c) + (uL` ρ+ c)

.

One can see from the first two expressions that p∗ increases and p∗ decreases if we decrease

the upper bound α. This confirms the claim that the experimentation region shrinks if

the constraint on α is tightened.

The cutoffs c, c are given by:

c := 0 ∨
λα
(
uRr − uR`

) (
uL` − uLr

)
− ρ

(
uRr u

L
` − uR` uLr

)
(uRr − uR` ) + (uL` − uLr )

, (C.2)
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c := 0 ∨


c ∧ λ

1+e2
min

{(
uRr − uR`

)
,
(
uL` − uLr

)}
if ρ = 1− α = 0,

c ∧min

 (ρ+λα)(uRr −uR` )

1+( 2ρ+λ
(2α−1)λ)

2α−1
(1−α)+ ρ

λ

− ρuRr ,
(ρ+λα)(uL` −uLr )

1+( 2ρ+λ
(2α−1)λ)

2α−1
(1−α)+ ρ

λ

− ρuL`

 otherwise.

(C.3)

From the first expression it is immediately clear that c decreases if we reduce the upper

bound α. It is less obvious that c increases at the same time. To see this, remember from

the proof of Theorem 1 that c > c is equivalent to

max
{
V own(p∗), V own(p∗)

}
> US(p∗).

The right-hand side of this inequality is independent of α. The left-hand however, is

decreasing in α.

C.3 Asymmetric Returns to Attention

In this section we revisit three crucial results that are used to prove Theorem 1, and

outline how they are changed if λ
R 6= λ

L
. Throughout we assume that λ

R ≥ λ
L
. Up to

relabeling this is without loss of generality. The three crucial results are:

(a) The Crossing Lemma 2 and the Unimprovability Lemma 3. In Appendix A, we

considered solutions V0 and V1 to the HJB equation where we set α = 0 or α = 1,

respectively. If we generalize the HJB equation to allow for λ
R
> λ

L
, we can obtain

similar solutions V0 and V1. Lemma 2 also uses the value of the stationary strategy

as a benchmark. The definition of the stationary strategy has to be modified if

λ
R
> λ

L
. The Bayesian updating formula in the absence of a signal is now given

by:

ṗt = −
(
λ
R
αt − λ

L
βt

)
pt (1− pt) , (C.4)

Hence the stationary attention strategy is given by

αS =
λ
L

λ
R

+ λ
L
.

Note that this coincides with the definition of our main model where αS = 1/2 if

λ
R

= λ
L
. The value of the stationary strategy is now

US(p) := p
αSλ

R
uRr − c

ρ+ αSλ
R

+ (1− p)β
Sλ

L
uL` − c

ρ+ βSλ
L
.

With this definition, Lemmas 2 and 3 continue to hold.
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(b) Properties of the own-biased strategy in Lemma 5:7 In Appendix A we have con-

structed the own-biased strategy by first obtaining the boundary points p∗ and p∗

from value matching and smooth pasting. Following the same steps while allowing

for λ
R
> λ

L
we get

p∗ =
uL` ρ+ c

ρ (uL` − uR` ) + (uRr − uR` )λ
R
, (C.5)

p∗ =

(
uL` − uLr

)
λ
L − uLr ρ− c

ρ (uRr − uLr ) + (uL` − uLr )λ
L
. (C.6)

The branches of the own-biased solution are then given by particular solutions V0

and V1 that satisfy the boundary conditions V0(p∗) = Ur(p
∗) and V1(p∗) = U`(p

∗).

Lemma 5.(a)-(b) hold unchanged if λ
R
> λ

L
. For the other results in Lemma 5, we

need to modify the definition of the full-attention strategy. We compute separately

the value of full attention if the DM can obtain both types of evidence at rate λ
R

:

UFA
R (p) : = p

λ
R
uRr − c

ρ+ λ
R

+ (1− p)λ
R
uL` − c

ρ+ λ
R

=
λ
R (

puRr + (1− p)uL`
)
− c

ρ+ λ
R

,

and at rate λ
L
:

UFA
L (p) : = p

λ
L
uRr − c

ρ+ λ
L

+ (1− p)λ
L
uL` − c

ρ+ λ
L

=
λ
L (

puRr + (1− p)uL`
)
− c

ρ+ λ
L

.

Generalizing Lemma 5.(c) we obtain now obtain:

U`(p
∗) = UFA

R (p∗), and Ur(p
∗) = UFA

r (p∗).

Lemma 5.(d) refers to the condition (EXP). If λ
R
> λ

L
, we need to define two

separate conditions

UFA
R (p̂) > U(p̂), (EXPR)

UFA
L (p̂) > U(p̂). (EXPL)

With this Lemma 5.(d) generalizes as follows: If (EXPR) holds, 0 < p∗ < p̂ and

V own(p) < UFA
R (p) for all p ∈ (p∗, 1), V own(p) > UFA

R (p) for p < p∗ and V own(p) =

UFA
R (p) if p ∈

{
p∗, 1

}
. If (EXPL) holds, 0 < p∗ < p∗ < p̂ and V own(p) < UFA

L (p) for

all p ∈ (0, p∗), V own(p) > UFA
L (p) for p > p∗ and V own(p) = UFA

L (p) if p ∈ {0, p∗}.
Lemma (5).(e) generalizes as follows: If (EXPL) is violated, then V own = U(p) for

all p ∈ [p̂, 1]. If (EXPR) is violated, then Vown = U(p) for all p ∈ [0, p̂].

7Lemma 5 repeats the statements of Lemma 1 so we do not discuss Lemma 1 separately.
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(c) Properties of the opposite-biased solution in Lemma 6: As in the main model, we

can use smooth pasting and value matching with US to obtain p∗ as follows:

p∗ =

(
uL` ρ+ c

)
λ
L

(uRr ρ+ c)λ
R

+ (uL` ρ+ c)λ
L
. (C.7)

As before we obtain the branches of the opposite-biased strategy as particular so-

lutions V0 and V1 with the boundary condition V0(p∗), V1(p∗) = US(p∗), and set

Vown(p) :=

V own(p), if p < p∗,

V own(p), if p ≥ p∗.

With this definition Lemma 6.(a) holds unchanged. Part (b) of the Lemma has to

be modified: Vopp(p) = V opp(p) ≤ UFA
L (p) for all p ∈ [0, p∗] with strict inequality for

p 6= p∗, and Vopp(p) = V own(p) ≤ UFA
R (p) for all p ∈ [p∗, 1] with strict inequality for

p 6= p∗.

The fact that the important Lemmas 2 and 3 continue to hold and we still have Vopp(p) >

US(p) for all p 6= p∗ from Lemma 6.(a), together imply that many of the structural

properties of VEnv(p) = max {Vown(p), Vopp(p)} are preserved and the structure of the

optimal policy is similar to the main model with λ
R

= λ
L
.

However, there is one crucial difference. It is now possible that V own(p) is dominated

by V own(p) or by Vopp(p) for all p < p∗. We only consider the case that Vown(p∗) >

US(p∗). In this case we can use similar steps as in the proof of Proposition 8.(a) to show

that VEnv(p) = Vown(p) for all p ∈ [0, 1], i.e., opposite-biased learning is never optimal.

However, it is no longer guaranteed that there exists a point of intersection p̌ ∈ (p∗, p∗)

between V own(p) and V own(p). This is most easily seen by considering the generalization

of Lemma 5.(c) outlined above. It is easy to see that UFA
R (p) > UFA

L (p) for all p ∈ [0, 1]

since λ
R
> λ

L
. Since both functions are strictly decreasing in c, we can find levels of c

for which UFA
L (p) < U(p) for all p ∈ [0, 1] but UFA

R (p) > U(p) for some p. In this case

Vown(p) = max
{
V own(p), V own(p)

}
= max {V own(p), Ur(p)} , ∀p ∈ [0, 1]. (C.8)

More generally, (C.8) may also hold if UFA
L (p) > U(p) for some p ∈ [0, 1]. Before

we could rule out this case since for λ
R

= λ
L
, V own(p) < UFA(p) for all p ∈ (p∗, 1) and

V own(p∗) = UFA(p∗). This is not longer true if λ
R
> λ

L
. The example in Panel (a) of

Figure 7 depicts such a case. Moreover we can argue that, as claimed in Section VI.C, this

case only arises if λ
R−λL is sufficiently large. To see this fix λ

R
such that V own(p) > U(p)

for some p. Note that V own(p) is independent of λ
L
, since p∗ does not depend on λ

L
and

V own(p) is the value of seeking R-evidence. Moreover, we have V own(p∗) > Ur(p
∗) and one

can easily verify that V own(1) = UFA
R (1) < Ur(p). Since Ur(p) is linear in p and V own(p)
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can be verified to be strictly convex, there exists a unique q such that V own(q) = Ur(q).

If q ≥ p∗, the Crossing Lemma 2 implies that there exists no intersection of V own(p) and

V own(p) between p∗ and p∗. In this case (C.8) holds. Conversely, if q < p∗ an intersection

point p̌ ∈ (p∗, p∗) exists and Vown(p) has the same structure as in our main model. It

remains to argue that q ≥ p∗ only if λ
R − λ

L
is sufficiently large. For λ

R − λ
L

= 0,

V own(p∗) < UFA
R (p∗) = UFA

L (p∗) = V own(p∗) = Ur(p
∗). Therefore, q < p∗. Decreasing λL

while holding λR fixed does not change q but decreases p∗. Hence, there exists a cutoff

for λL below which (for given λR), q ≥ p∗.

C.4 Diminishing Returns to Attention

As an extension to the main model in Section II, we show that the general structure of the

solution is preserved if the arrival rate of breakthroughs from a given news source does

not increase linearly in the amount of attention allocated to the source. For the proofs we

adopt a different notation than in Section VI.D. Note that each choice of attention gives

rise to a pair of arrival rates (λR, λL). For given g(x) a pair (λR, λL) is feasible if there

exists α ∈ [0, 1] such that λR ≤ λg(α) and λL ≤ λg(1 − α). Instead of working with the

function g(x) we introduce a function Γ(λR) that characterizes the upper bound of the

set of feasible pairs (λR, λL) as follows:8

{
(λR, λL) ∈ R+

∣∣λL ≤ Γ(λR)
}
.

Remember from Section VI.D that λR = λg(α) and λL = λg(1 − α). If we normalize

λ = 1, we can derive Γ(λ) from the function g(x):9

Γ(λR) = g(1− g−1(λR)).

Clearly, the DM will only chose pairs of arrival rates on the upper bound, i.e.,

(λR,Γ(λR)), so we can describe her choice by λR. To simplify the notation we omit

the superscript and write λ instead of λR. Moreover we assume that λ ∈ [0, 1]. We

8The feasible set of arrival rates can also be derived from a model with many news sources but constant
returns to attention. In this model, a news source is now characterized by two parameters (λR, λL). If an
amount of attention αi is directed to a news-source given by (λRi , λ

L
i ), the DM will receive a signal from

that source that confirms state R with Poisson arrival rate λRi αi if the state is indeed R and she will receive
a signal that confirms state L with Poisson arrival rate λLi αi if the state is L. Hence, when allocating
her attention over two news sources with parameters (λRi , λ

L
i ) and (λRj , λ

L
j ) with attention levels αi and

αj = 1 − αi, the DM will receive a signal that confirms R with Poisson rate λR = αiλ
R
i + (1 − αj)λ

R
j ,

and a signal that confirms L with Poisson rate λL = αiλ
L
i + (1− αi)λ

L
j . The set of feasible arrival rates

(λR, λL) is thus a weakly convex subset of R+. We denote the upper bound of this set Γ(λR) and note
that weak convexity of the set implies weak concavity Γ(λR). In the main model studied before we had
Γ(λR) = 1 − λR, which is the linear boundary that is spanned by the two primitive news sources given
by (1, 0) and (0, 1).

9The normalization of the upper bound is without loss of generality since only the ratios ρ/λ and c/λ
matter.
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maintain the following assumptions about the function Γ.

Assumption 1. Γ : [0, 1]→ [0, 1] is twice continuously differentiable, strictly decreasing,

strictly convex, and satisfies Γ(0) = 1, Γ(1) = 0 and Γ′(γ) = −1, where γ is the unique

fixed point of Γ.

Note that Γ′(γ) = −1 is always fulfilled if Γ is derived from a differentiable function g

since Γ(Γ(x)) = x in this case which implies that the graph of Γ is symmetric with respect

to the 45-degree line.

Example 1. A parametric example is obtained by setting g(x) =
√

1 + 4x+ x2−2. The

inverse is g−1(x) = 2
√

4− 2x− x2 and we obtain

Γ(λR) = g(1− g−1(λR)) =

√
6
√

4− 2λR − (λR)2 + λR(2 + λR)− 8− 1.

This is the example used in Figure 8 in Section VI.D.

C.4.1 The Decision Maker’s Problem

The DM’s posterior evolves according to

ṗt = −pt(1− pt) (λt − Γ(λt)) , (C.9)

The objective is given by

J ((λt)t≥0, T ; p0) :=

{∫ T
0
e−ρtPt(p0, (λτ ))

(
ptλtu

R
r + (1− pt)Γ(λt)u

L
`

)
dt

+e−ρTPT (p0, (λτ ))U(pT )

}
,

where Pt(p0, (λτ )) :=p0e
−

∫ t
0 λsds + (1− p0)e−

∫ t
0 Γ(λs)ds.

The DM solves the problem (PΓ) given by:

V (p0) := sup
((λt)t≥0,T)

J ((λt)t≥0, T ; p0) s.t. (C.9), and λt ∈ [0, 1]. (PΓ)

We define

H(p, V (p), V ′(p), λ) :=

{
λp
(
uRr − V (p)

)
+ Γ(λ)(1− p)

(
uL` − V (p)

)
−p(1− p)(λ− Γ(λ))V ′(p)

}
.

The HJB equation for (PΓ) is

max

{
−c− ρV (p) + max

λ∈[0,1]
H(p, V (p), V ′(p), λ), U(p)− V (p)

}
= 0. (C.10)
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If V (p) > U(p) this simplifies to

c+ ρV (p) = max
λ∈[0,1]

H(p, V (p), V ′(p), λ). (C.11)

The first-order condition is given by

∂H(p, V (p), V ′(p), λ)

∂λ
=

{
p
(
uRr − V (p)

)
+ Γ′(λ)(1− p)

(
uL` − V (p)

)
−p(1− p)(1− Γ′(λ))V ′(p)

}
= 0. (C.12)

For a given policy λ(p), we obtain the differential equation

c+ ρV (p) = H(p, V (p), V ′(p), λ(p)) (C.13)

⇐⇒ c+ ρV (p) =

{
λ(p)p

(
uRr − V (p)

)
+ Γ(λ(p))(1− p)

(
uL` − V (p)

)
−p(1− p)(λ(p)− Γ(λ(p)))V ′(p)

}
.

As in our original model, we will define two candidate value functions. For this purpose,

we state the HJB equation for problems in which the DM is either restricted to choose

λ ≥ γ,

c+ ρV+(p) = maxλ∈[γ,1]H(p, V+(p), V ′+(p), λ), (C.14)

or λ ≤ γ:

c+ ρV−(p) = maxλ∈[0,γ] H(p, V−(p), V ′−(p), λ). (C.15)

we denote policies corresponding to solution to (C.14) and (C.15) by λ+(p) and λ−(p),

respectively.

C.4.2 Preliminary results

We first revisit some definitions made for the original model. The stationary strategy is

now given by choosing λ = γ until a signal arrives and then taking an optimal action

according to the signal. The value of this strategy is now given by

US(p) =
γ

ρ+ γ
U∗(p)− c

ρ+ γ
,

where

U∗(p) = puRr + (1− p)uL`

is the first best value that is achieved if the DM can learn the state without any delay.

As in the original model, we obtain a crossing condition for functions that satisfy

(C.14) and (C.15) and a condition under which solutions to (C.14) and (C.15) satisfy
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(C.11).

Lemma 8 (Crossing Lemma). Suppose V+(p) is C1 at p and satisfies (C.14) and V−(p)

is C1 at p and satisfies (C.15). If V+(p) = V−(p) ≥ US(p), then V ′+(p) ≤ V ′−(p). If

V+(p) = V−(p) > US(p), then V ′+(p) < V ′−(p).

Proof of Lemma 8. Suppose V (p) := V+(p) = V−(p) ≥ US(p) at p and denote the maxi-

mizers in (C.14) and (C.15) by λ+(p) and λ−(p) respectively.

From (C.14) and (C.15), we obtain

p(1− p)(Γ(λ−(p))− λ−(p))(λ+(p)− Γ(λ+(p)))(V ′−(p)− V ′+(p))

= (δ(p)ρ+ ∆(p))

[
V (p)−

∆(p)
δ(p)

∆(p)
δ(p)

+ ρ
U∗(p) +

1
∆(p)
δ(p)

+ ρ
c

]

≥ (δ(p)ρ+ ∆(p))

[
V (p)− γ

γ + ρ
U∗(p) +

1

γ + ρ
c

]
= (δ(p)ρ+ ∆(p))

[
V (p)− US(p)

]
,

where

δ(p) :=Γ(λ−(p))− λ−(p) + λ+(p)− Γ(λ+(p)) > 0,

∆(p) :=λ+(p)Γ(λ−(p))− λ−(p)Γ(λ+(p)) > 0,

since λ+(p) > γ > λ−(p). The inequality can be seen as follows. First, one can verify that

(∆(p)/δ(p),∆(p)/δ(p)) is the point of intersection between the forty-five degrees line and

the line segment between two points, (λ−(p),Γ(λ−(p))) and (λ+(p),Γ(λ+(p))). Since Γ is

concave, we must have ∆(p)/δ(p) < γ. Since δ(p),∆(p) ≥ 0, if V (p) ≥ US(p), the last

expression is non-negative, and if V (p) > US(p), it is strictly positive.

Lemma 9 (Unimprovability). (a) Suppose V+(p) is C1 at p and satisfies (C.14). If

V+(p) ≥ max{US(p), U(p)}, then V+(p) satisfies (C.11) at p.

(b) Suppose V−(p) is C1 at p and satisfies (C.15). If V−(p) ≥ max{US(p), U(p)}, then

V−(p) satisfies (C.11) at p.

Proof of Lemma 9. We prove the first statement; the second follows symmetrically. Sup-

pose the optimal policy satisfies λ+(p) > γ. By the condition, it is not improvable by an

immediate action or by any λ ≥ γ. Hence, it suffices to show that it is not improvable by

any λ− < γ.

Substituting V ′+(p) from (C.14) and rearranging we get

H(p, V+(p), V ′+(p), λ+(p))−H(p, V+(p), V ′+(p), λ−)
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=
δ̂(p)ρ+ ∆̂(p)

λ+(p))− Γ(λ+(p)))

V+(p)−
∆̂(p)

δ̂(p)

∆̂(p)

δ̂(p)
+ ρ

US +
1

∆̂(p)

δ̂(p)
+ ρ

c


≥ δ̂(p)ρ+ ∆̂(p)

λ+(p))− Γ(λ+(p)))

[
V+(p)− US(p)

]
,

where

δ̂(p) := Γ(λ−)− λ− + λ+(p)− Γ(λ+(p)) and ∆̂(p) := λ+(p)Γ(λ−)− λ−Γ(λ+(p)).

The inequality follows from the same observation as in the proof of Lemma (8).

Before constructing the value function for (PΓ), we make one general observation

about the boundaries of the experimentation region and the value opposite-biased signals

at the boundaries.

For this purpose we consider a model in which the DM has full attention. In this case

we have λR = 1 = λL and the DM only chooses when to stop. Note that Assumption 1

precludes the DM from choosing λR = 1 = λL so the full attention model only serves as

a hypothetical benchmark.

The value of this stopping problem is given by

V̂ (p) := max
{
U(p), UFA(p)

}
,

where

UFA(p) =
1

ρ+ 1
U∗(p)− c

ρ+ 1
.

Moreover, we note that by Assumption 1, (λ,Γ(λ)) ≤ (1, 1) for all λ ∈ (0, 1). Therefore,

V̂ (p) is an upper bound for the value function of the problem (PΓ).

Remember that in our original model, the boundaries of the experimentation region

are given by the points of intersection between UFA(p) and U(p):

UFA(p∗) = Ur(p
∗). (C.16)

UFA(p∗) = U`(p
∗). (C.17)

If (EXP) is satisfied, we have p∗ < p∗. We now show that the value of (PΓ) is equal to

V̂ at these boundaries. This immediately shows that p∗ and p∗ are the boundaries of the

experimentation region in (PΓ). Moreover, we show that under Assumption 1, at these

boundaries, the DM does not benefit from interior choices λ ∈ (0, 1).

Proposition 10. Suppose (EXP) is satisfied. Then p∗ and p∗ given by (C.16) and (C.17)

are the boundaries of the the experimentation region for the optimal solution to (PΓ). At

p∗ and p∗, the value of (PΓ) coincides with the value of our original model and equals
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UFA(p) The loss of restricting the DM to chose λ ∈ {0, 1} vanishes as p ↓ p∗ and p ↑ p∗.

Proof. If the DM is restricted to chose λ ∈ {0, 1}, her optimal strategy coincides with the

optimal strategy in our original model. The value in our original model is a lower bound

for the value of (PΓ). Since at p∗ and p∗ the value in our original model coincides with

the upper bound UFA(p), it must also coincide with the value of (PΓ).

Note that while Assumption 1 requires Γ(λ) < 1 for λ > 0, it does not rule out an Inada

condition like limλ→0 Γ′(λ) = 0. This shows that at the boundaries of the experimentation

region, the value of a opposite-biased signal is zero even if it is cost-less to obtain. We

will see below when we characterize the value function that without an Inada condition,

there exist neighborhoods of p∗ and p∗ such that the DM does not suffer any loss if in

these neighborhoods she uses λ = 1 and λ = 0, respectively.

C.4.3 Construction of Solutions to the HJB equation

For the remainder of this section, we will focus on the cases that the payoffs are symmetric.

This simplifies the derivations and is sufficient to understand the main features of the

optimal solution in the extension. Formally we impose:

Assumption 2. uRr = uL` = US and uR` = uLr = u for some u > u > 0.

In contrast to our original model, it may now be optimal to choose λ ∈ (0, 1) for beliefs

p ∈
(
p∗, p∗

)
, i.e., in the interior of the experimentation region. For an interval where this

is the case, we will obtain a differential equation for λ(p) and furthermore an equation

that expresses V (p) as a function of λ(p). We begin with the latter. To state the result

in concise form we define

A(λ) :=
Γ(λ)− Γ′(λ)λ

Γ(λ)− Γ′(λ)λ+ ρ (1− Γ′(λ))
, and B(λ) :=

1− Γ′(λ)

Γ(λ)− Γ′(λ)λ+ ρ (1− Γ′(λ))
.

A basic observation that we will use at several points is that these two functions are

(inverse) U-shaped with (maximum) minimum at λ = γ.

Lemma 10. If Assumption 1 is satisfied,

A′(λ) > (<)0 ⇐⇒ B′(λ) < (>)0 ⇐⇒ λ > (<)γ.

Proof. The Lemma follows from straightforward algebra which we omit here.

Lemma 11. Suppose Assumptions 1 and 2 are satisfied. If p ∈ (0, 1), V (p) is continuously

differentiable at p and satisfies (C.11) with maximizer λ(p) 6= γ, then

V (p) ≥ A(λ(p))u−B(λ(p)) c ≥ US(p) (C.18)
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If λ satisfies (C.12) at p, then the first inequality binds. The statement continues to hold

if we replace V , λ, and (C.11), by V+, λ+ and (C.14), or V−, λ− and (C.15).

Proof of Lemma 11. We define the LHS of (C.12) as

X := (p+ (1− p)Γ′(λ)) (u− V (p))− p(1− p)(1− Γ′(λ))V ′(p). (C.19)

Eliminating V ′(p) from (C.13) and (C.19) we obtain an expression for V (p) in terms of

λ(p) and X:

V (p) = A(λ(p))u−B(λ(p)) c+
X (λ− Γ(λ(p)))

Γ(λ)− Γ′(λ)λ+ ρ (1− Γ′(λ))
.

If λ(p) is a maximizer in (C.11), we must have

X


≥ 0 if λ = 1,

= 0 if λ ∈ (0, 1),

≤ 0 if λ = 0.

Since λ = 1 implies λ− Γ(λ(p)) > 0 and λ = 0 implies λ− Γ(λ(p)) < 0 we have

V (p) ≥ A(λ(p))u−B(λ(p)) c,

and the inequality holds with equality if X = 0 which is equivalent to λ satisfying (C.12).

This proves the first inequality and the first statement.

The second inequality follows from Lemma 10 and A(γ)u− B(γ) c = US(p), which is

obtained from straightforward algebra. It is straightforward to adapt the proofs to V+

and V−.

Using Lemma 11 we can obtain an ODE for λ that holds whenever the optimal policy

is interior, i.e., it satisfies (C.12).

Lemma 12. Suppose Assumptions 1 and 2 are satisfied. If p ∈ (0, 1), V is continuously

differentiable at p and satisfies (C.13) and the maximizer is λ(p) 6= γ and satisfies (C.12)

at p, then

λ′(p) =
[p+ (1− p)Γ′(λ(p))] [Γ(λ(p))− Γ′(λ(p))λ(p) + ρ (1− Γ′(λ(p)))]

p(1− p) (Γ(λ(p))− λ(p)) Γ′′(λ(p))
. (C.20)

The statement continues to hold if we replace V and λ, by V+ and λ+, or V− and λ−.

Proof of Lemma 12. If λ(p) 6= γ satisfies (C.12), then by Lemma 11

V (p) = A(λ(p))u−B(λ(p)) c,
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and V ′(p) = A′(λ(p))λ′(p)u−B′(λ(p))λ′(p) c.

Inserting these two equations in (C.13) and solving for λ′(p) we get (C.20)

Next, we state a Lemma that identifies conditions under which the solution to (C.20)

remains bounded away from λ = 0 or λ = 1.

Lemma 13. Suppose Assumptions 1 and 2 are satisfied. Then there exists function

p1(x) > 1/2 for x > γ and p0(x) < 1/2 for x < γ such that

λ(p) = λ+ > γ ⇒
{
λ′(p) < 0 ⇐⇒ p < p1(λ+)

}
,

λ(p) = λ− < γ ⇒
{
λ′(p) > 0 ⇐⇒ p > p0(λ−)

}
.

Proof. Inserting λ(p) = λ+ > γ in (C.20) yields

λ′(p) < 0

⇐⇒ [p+ (1− p)Γ′(λ+)]
Γ(λ+)− Γ′(λ+)λ+ + ρ (1− Γ′(λ+))

p(1− p) (Γ(λ(p))− λ(p)) Γ′′(λ(p))
< 0

⇐⇒ p+ (1− p)Γ′(λ+) < 0

⇐⇒ p < p1(λ+) =
|Γ′(λ+)|

1 + |Γ′(λ+)|

Since |Γ′(λ+)| > 1 p1 > 1/2. The proof for λ(p) = λ− < γ is similar.

Next, we show the following property that relates sufficiency of the FOC (C.12) to

convexity of the value function.

Lemma 14. Suppose Assumptions 1 and 2 are satisfied.

(a) Let W : [0, 1] → R be weakly convex and satisfy W (p) = U(p) in neighborhoods of

0 and 1. Then H(p,W (p),W ′(p), λ) is weakly concave in λ for all p and strictly

concave whenever W (p) > U(p).

(b) Let λ(p) be a solution to (C.20) such that λ(p) ∈ (0, 1) at some p. Let

π(`) =
(ρ+ `) Γ′(`)

(ρ+ `) Γ′(`)− (ρ+ Γ(`))
.

Then

∂2 [A(λ(p))u−B(λ(p))c]

∂p2
≥ 0 if

 λ(p) > γ and p ≤ π(λ(p)),

or λ(p) < γ and p ≥ π(λ(p)).

π(`) > 1/2 if ` > γ, and π(`) < 1/2 if ` < γ.
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Proof. (a) Some algebra yields

∂2H(p,W (p),W ′(p), λ)

∂λ2
≤ 0 ⇐⇒ W (p)− pW ′(p) ≤ US.

The latter inequality is satisfied under the assumptions on W and both are strict if

W (p) > U(p).

(b) Differentiating A(λ(p))u − B(λ(p))c with respect to p, substituting λ′(p) from

(C.20) and differentiating again yields (after some algebra):

∂2 [A(λ(p))u−B(λ(p))c]

∂p2
< 0

⇐⇒ −(p2 − (1− p)2Γ′(λ(p))) (ρ+ Γ(λ(p))− (ρ+ λ(p))Γ′(λ(p)))

p(1− p) (ρ+ pλ(p) + (1− p)Γ(λ(p))) Γ′′(λ(p))
> λ′(p).

Substituting λ′(p) from (C.20) in the last line and rearranging we get

(λ(p)− Γ(λ(p))) (p [ρ+ Γ(λ(p))] + (1− p) [ρ+ λ(p)] Γ′(λ(p))) < 0.

Solving for p this yields an upper bound if λ(p) > γ so that the first term is positive and

a lower bound if λ(p) < γ. The bound is π(λ(p)) in both cases. If ` > γ > Γ(`) we have

π(`) =
(ρ+ `) |Γ′(`)|

(ρ+ `) |Γ′(`)|+ (ρ+ Γ(`))

>
(ρ+ `) |Γ′(`)|

(ρ+ `) |Γ′(`)|+ (ρ+ `)

=
|Γ′(`)|
|Γ′(`)|+ 1

> 1/2.

where the last step follows because Assumption 1 implies that |Γ′(`)| > 1 if ` > γ.

Similarly we obtain π(`) < 1/2 if ` < γ.

C.4.4 Solution Candidates

Own-Biased Learning The first candidate is obtained by assuming that the DM uses

an own-biased attention strategy. In contrast to our original model, where we choose

λ ∈ {0, 1}, we will now also use interior values for λ. In an own-biased strategy, the DM

may now receive breakthrough news for both states but with a higher likelihood in the

state that she find relatively unlikely. For instance, for low posterior beliefs p, the own-

biased strategy involves λ > γ. At the same time, the belief moves in the same direction

as the initial bias if now breakthrough arrives: ṗt < 0 if λ > γ. We have already identified

the boundaries of the experimentation region.
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Lemma 15. Suppose (EXP) is satisfied. Then p∗ and p∗ satisfy

p∗ = inf

{
p ∈ [0, p̂)

∣∣∣∣∣ c+ ρU`(p) ≤ max
λ∈[γ,1]

{
(λp+ Γ(λ)(1− p)) (u− U`(p))
−p(1− p)(λ− Γ(λ))U ′`(p)

}}
, (C.21)

p∗ = sup

{
p ∈ (p̂, 1]

∣∣∣∣∣ c+ ρUr(p) ≤ max
λ∈[0,γ]

{
(λp+ Γ(λ)(1− p)) (u− Ur(p))
−p(1− p)(λ− Γ(λ))U ′r(p)

}}
, (C.22)

and the maximizers on the right-hand side are given by λ = 1 and λ = 0, respectively.

Moreover,

U`(p
∗) ≥ A(1)u−B(1)c,

and Ur(p
∗) ≥ A(1)u−B(1)c.

The first inequality is strict if and only if Γ′(1) is finite. The second is strict if and only

if Γ′(0) < 0.

Proof of Lemma 15. We only give the proof for p∗, the other case is symmetric. Consider

the maximization problem in (C.21). The derivative of the objective function simplifies

to p (u− u). Therefore we can set λ = 1 and (C.21) reduces to the definition via smooth

pasting and value matching as in our original model.

The first inequality is equivalent to

1

(1 + ρ)Γ′(1)− ρ
≤ 0,

which holds under Assumption 1. The inequality is strict if and only if Γ′(1) is finite. The

second inequality is equivalent to

Γ′(0)

1 + ρ− ρΓ′(0)
≤ 0,

which is strict if and only if Γ′(0) < 0.

We are now ready to define the opposite-biased strategy. Given that we impose As-

sumption 1, we only describe the construction for the left branch which is used for p ≤ 1/2.

There are up to four intervals where the opposite-biased strategy takes a different form.

First, for p ≤ p∗, the DM takes immediate action. Then there is an interval (p∗, qb] where

the DM uses the own-biased strategy from our original model. qb is given by

∂H(qb, V own(qb), V ′own(qb), 1)

∂λ
= 0.
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Rearranging this we get

(1 + ρ)Γ′(qb)

ρ− (1 + ρ)Γ′(qb)
+ qb + (1− qb)

(
1− qb

qb
p∗

1− p∗

)ρ

= 0,

which is equivalent to

V opp(q
b) = A(1)u−B(1)c.

By Lemma 15, qb = p∗ if Γ′(1) is infinite and otherwise qb > p∗. If qb ≥ 1/2 we define

the own-biased strategy as in our original model. If qb < 1/2, Lemma 13 implies that

λ′(qb) < 0 if we impose the boundary condition λ(qb) = 1. Denote the unique solution

for p ≥ qb to (C.20) with λ(qb) = 1 by λ(p; qb, 1). Since by Lemma 13, λ′(p; p, 1) < 0 for

all p ≤ 1/2, we have λ(p; qb, 1) < 1 for p ∈ (qb, 1/2). Finally we need to take care of the

possibility that there exists qs ∈ (qb, 1/2] such that λ(p; qb, 1) = γ. If no such qs exists we

set qs = 1/2. If Assumption 2 is satisfied, a symmetric construction can be used for the

right branch with cutoffs qb = 1− qb and qs = 1− qs.
We thus define the opposite biased strategy as follows. For p /∈

(
p∗, p∗

)
: take the op-

timal immediate action. For p ∈
(
p∗, p∗

)
, experiment according to the following attention

strategy:

λΓ
own(p) =



1, if p ∈ (p∗, qb],

λ(p; qb, 1), if p ∈ (qb, qs],

γ, if p ∈ (qs, qs),

λ(p; qb, 0), if p ∈ [qs, qb),

0, if p ∈ [qb, p∗),

and take an action corresponding to the signal if one is received.10 Note that by Lemma

13, λΓ
own(p) is strictly decreasing if p ∈ (qb, qs]∪ [qs, qb). The value of this strategy is given

by

V Γ
own(p) =



Vown(p), if p ≤ qb,

A
(
λ(p; qb, 1)

)
u−B

(
λ(p; qb, 1)

)
c, if p ∈ (qb, qs],

US(p), if p ∈ (qs, qs),

A
(
λ(p; qb, 0)

)
u−B

(
λ(p; qb, 0)

)
c, if p ∈ [qs, qb),

Vown(p), if p ≥ qb,

where Vown(p) denotes the value of the opposite-biased strategy from our original model.

Note that since we focus attention on the symmetric case (Assumption 2), the belief that

separates the “left branch” and the “right branch” of the opposite-biased solution is given

10If qs = qs, λΓ
own(qs) ∈

{
λ(qs; qb, 1), λ(qs; qb, 0)

}
with an arbitrary tie-breaking rule.
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by p̌. Note also, that in contrast to our original model, we defined the own-biased strategy

in a way that it is always weakly greater than US(p).

The implied dynamics of the posterior as well as the attention strategy are summarized

by the following diagram:

|——————︸ ︷︷ ︸
immediate action b

p∗

information acquisition︷ ︸︸ ︷
←−←−︸ ︷︷ ︸

λ=1

qb←−←−︸ ︷︷ ︸
λ∈(γ,1)

qs —p̌—︸ ︷︷ ︸
λ=γ

qs−→−→︸ ︷︷ ︸
λ∈(0,γ)

qb−→−→︸ ︷︷ ︸
λ=0

p̄∗——————︸ ︷︷ ︸
immediate action a

|

Lemma 16. Suppose Assumptions 1 and 2 are satisfied. Then V Γ
own is continuously

differentiable and convex on
[
0, qs

)
and on (qs, 1], respectively, and satisfies (C.11) on[

p∗, qs
)

and on (qs, p∗], respectively.

Proof. We show the Lemma for p ≤ 1/2. The remaining results follow from a symmetric

argument.

We need to show that V Γ
own is continuously differentiable at qb. For r > 0, some algebra

yields for p ≤ 1/211

V Γ
own = A(1)u−B(1)c

⇐⇒
(

p∗

1− p∗
1− p
p

)ρ
= 1− r

(1− p) (ρ− (1 + ρ)Γ′[1])
.

Substituting this expression in V Γ′
own(p) yields

V Γ′
own(p)

∣∣
Vown(p)=A(1)u−B(1)c

=

(
c+ ρUS

)
(p+ (1− p)Γ′[1])

(1− p) p (ρ− (1 + ρ)Γ′[1])

=
∂ [A(λ(p))u−B(λ(p))c]

∂λ

∣∣∣∣
λ(p)=1

.

Convexity on
[
p∗, qs

]
follows from strict convexity of Vown (Lemma 5) and strict convexity

of A(λ(p))u−B(λ(p))c (Lemma 14.(b)) and continuous differentiability.

Note that by Lemma 9, it suffices to show that V Γ
own satisfies (C.14) for all

[
p∗, qs

)
since V Γ

own(p) > US(p) for p < qs. We have derived V Γ
own from the first order-condition

(C.12) and the respective Kuhn-Tucker condition of p < qb. Therefore it suffices to show

that the maximization problem in the HJB equation is concave. By Lemma 14.(a), this

is the case since we have shown that V Γ
own is weakly convex.

Opposite-Biased Learning The second candidate for the value function is obtained

by assuming that the DM uses an opposite-biased attention strategy. Specifically, we

define a “reference belief” p∗ such that the DM chooses λ < γ for lower beliefs p < p∗

and λ > γ for higher beliefs p > p∗. The implied dynamics of the posterior as well as the

11The derivation for r = 0 is similar.
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attention strategy are summarized by the following diagram:

| −→−→−→−→︸ ︷︷ ︸
λ∈[0,γ)

p∗←−←−←−←−︸ ︷︷ ︸
λ∈(γ,1]

|

The reference belief is absorbing and we assume that once p∗ is reached, the DM

adopts the stationary attention strategy λ = γ. Under Assumption 2, we have p∗ = 1/2.

This can also be derived from value matching

V (p∗) = US(p∗)(= US), (C.23)

and the tangency condition

V ′(p∗) = US′(p∗)(= 0). (C.24)

Substituting these two conditions together with λ = γ in (C.12) yields p∗ = 1/2.12

We would now like to construct the opposite-biased strategy in a similar fashion as

the own-biased solution, that is, we will identify two types of regions. If λ ∈ {0, 1}, we

will use solutions to (A7) or (A8) (with λ = 1, λ = 1 and α replace by λ.) On the other

hand, if λ ∈ (0, 1) we will use solutions to (C.20) with a suitable boundary condition. A

problem arises since we want to impose the boundary condition λ(p∗) = γ. Note that this

implies λ′(p∗) = 0/0. We therefore begin by identifying a solution to (C.20) that satisfies

λ(p∗) = γ as well as λ′(p∗) > 0.

Lemma 17. Suppose Assumptions 1 and 2 are satisfied. Then there exists a unique con-

tinuously differentiable function λ̂opp(p) which satisfies (C.20) for all p in a neighborhood

of p∗ = 1/2, such that λ(p∗) = γ and λ′(p∗) > 0. The derivative at p∗ is given by

λ̂′opp(p
∗) = − (ρ+ γ) +

√
(ρ+ γ)2 − 8 (ρ+ γ)

Γ′′(γ)
.

Proof of Lemma 17. The ODE (C.20) can be written as

λ′(p) =
P (p, λ(p))

Q(p, λ(p))
,

where

P (p, λ) = [Γ(λ)− Γ′(λ)λ+ ρ (1− Γ′(λ))]× [p+ Γ′(λ) (1− p)] ,

Q(p, λ) = p(1− p)Γ′′(λ) [Γ(λ)− λ] .

Since P and Q are both continuous and have continuous partial derivatives, the behavior

12Note that in contrast to the linear model, we cannot use the HJB equation because for λ = γ, V ′(p)
vanishes so that substituting (C.24) has no bite.
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of solutions that go through points in a neighborhood of (p∗, γ) is, under some conditions

(see below), the same as for13

λ′(p) =
a (p− p∗) + b (λ(p)− γ)

c (p− p∗) + d (λ(p)− γ)
, (C.25)

where

a = ∂pP (p∗, γ) = 4 (ρ+ γ) > 0,

b = ∂λP (p∗, γ) = (ρ+ γ) Γ′′(γ) < 0,

c = ∂pQ(p∗, γ) = 0,

d = ∂λQ(p∗, γ) = −1

2
Γ′′(γ) > 0.

The characteristic equation is

x2 − bx− ad = 0.

Since ad > 0, the characteristic equation has two reals roots of opposite sign. This implies

that (p∗, γ) is a saddle point and there are two continuously differentiable solutions λ(p)

that pass through (p∗, γ). In the case of a saddle point, the behavior of the solutions of

(C.25) in a neighborhood of (p∗, γ) corresponds to the behavior of the solutions to (C.20).

Hence there exist two continuously differentiable solutions λ(p) that satisfy the boundary

condition λ(p∗) = γ.

Next we want to obtain λ′(p∗) for these solutions, and show that only one of them has

a positive derivative. We have

λ′(p∗) = lim
p→p∗

λ′(p) = lim
p→p∗

P (p, λ(p))

Q(p, λ(p))

= lim
p→p∗

∂pP (p, λ(p)) + ∂λP (p, λ(p))λ′(p)

∂pQ(p, λ(p)) + ∂λQ(p, λ(p))λ′(p)

=
a+ bλ′(p∗)

dλ′(p∗)
.

Hence λ′(p∗) solves

x2 − b

d
x− a

d
= 0,

λ′(p∗) =
b

2d
±

√(
b

2d

)2

+
a

d
.

Since a/d > 0, there is one positive and one negative solution. For the opposite-biased

13See e.g. Bronshtein, Semendyayev, Musiol, and Muehlig (2007).
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solution, we are interested in a solution that satisfies λ′(p∗) > 0. Hence we have

λ′(p∗) =
b

2d
+

√(
b

2d

)2

+
4 (ρ+ γ)

d

= − (ρ+ γ) +

√
(ρ+ γ)2 − 8 (ρ+ γ)

Γ′′(γ)
.

Lemma 17 provides the solution λ̂opp which together with V (p) = A(λ̂opp(p))u defines

Vopp in a neighborhood of p∗. To extend this definition to (0, 1) we first extend λ̂opp to

the maximal interval (q, q) where λ̂opp(p) ∈ (0, 1) \ {γ} unless p = p∗.

Lemma 18. Suppose Assumptions 1 and 2 are satisfied. There exist two points 0 ≤ q <

p∗ < q ≤ 1 such that

(a) λ̂opp(p) is well defined as the unique C1-solution to (C.20) that satisfies the properties

in Lemma 17

(b) λ̂opp(p) > γ if p > p∗ and λ̂opp(p) < γ if p < p∗.

(c) Either q = 0 or λ̂opp(q) = 0.

(d) Either q = 1 or λ̂opp(q) = 1.

Note that Properties (c) and (d) mean that the interval (q, q) is the maximal interval

where λ̂opp(p) ∈ (0, 1).

Proof of Lemma 18. Consider the interval (q, p∗). λ̂opp(p) ∈ (0, γ) in a neighborhood of

p∗. Moreover, (C.20) satisfies local Lipschitz continuity if p ∈ (0, p∗) and λ 6= γ. Hence, if

there exists a C1 solution to (C.20) with initial condition λ̂opp(p
∗−ε) ∈ (0, γ) that satisfies

λ̂opp(p) ∈ (0, γ) for all p ∈ (q, p∗), then it is the unique such solution. We first show that by

extending the interval from a neighborhood of p∗ to (q, p∗), we do not violate λ̂opp(p) < γ.

Suppose by contradiction that there exists p′ < p∗ such that limp↘p′ λ̂opp(p) ↗ γ. Note

that

p′ + Γ′(γ)(1− p′) < p∗ + Γ′(γ)(1− p∗) = 0.

Hence, since Γ′′ < 0,limp↘p′ λ̂
′
opp(p) → ∞ which contradicts limp↘p′ λ̂opp(p) ↗ γ. There-

fore we can extend the domain of λ̂opp(p) to the left until either p = 0 or λ̂opp(p) = 0.

This completes the proof for p < p∗ and the argument for p > p∗ is similar.

If q > 0 and q < 1, respectively, then we further extend λopp(p) to (0, 1) by setting

λ = 0 for p < q and λ = 1 for p > q. We define

λΓ
opp(p) :=


0, if p ≤ q,

λ̂opp(p), if p ∈ (q, q),

1, if p ≥ q.

38



The value of this strategy is given by

V Γ
opp(p) :=


V0

(
p; q, A(0)u−B(0)c

)
if p ≤ q,

A(λopp(p))u if p ∈ (q, q),

V1 (p; q, A(1)u−B(1)c) if p ≥ q.

Lemma 19. Suppose Assumptions 1 and 2 are satisfied. Then V Γ
opp(p) is a C1 solution to

(C.11) and V Γ
opp(p) is strictly convex on

(
q, q
)
.

Proof. The proof has several steps. We give arguments for p ≥ 1/2. The Lemma then

follows by symmetry (Assumption 2) and the fact that V Γ
opp(p) is constructed in a way that

is continuously differentiable at p∗ (see (C.24)). Suppose in the following that p > 1/2.

First we note that V Γ
opp(p) is continuously differentiable. This holds by construction

for p 6= q and at q it follows by the same argument as in the proof of Lemma 16.

Second, we shows that V Γ
opp(p) is strictly convex. For p > 1/2, λΓ

opp(p) > γ . Therefore,

by Lemma 14, strict convexity on (p∗, q) follows if p < π(λΓ
opp(p)) for all p ∈ (p∗, q).

Note that π(λΓ
opp(p

∗)) = π(γ) = 1/2. We show that whenever p = π(λΓ
opp(p)), then

π′(λΓ
opp(p))λ

Γ′
opp(p) > 1. This implies that p < π(λΓ

opp(p)) for all p ∈ (p∗, q). We have

π′(λΓ
opp(p

∗))λΓ′
opp(p

∗) > 1

⇐⇒ 2− (ρ+ γ)Γ′′(γ)

4(ρ+ γ)

(√
(r + γ)2 − 8 (ρ+ γ)

Γ′′(γ)
− (ρ+ γ)

)
> 1

⇐⇒ Γ′′(γ) < 0.

for p > p∗, we substitute p = π(λΓ
opp(p)) in (C.20), which yields (after some algebra)

π′(λΓ
opp(p

∗))λΓ′
opp(p

∗) = 1 +
Γ′(λΓ

opp(p))
(
ρ+ Γ(λΓ

opp(p))−
(
ρ+ λΓ

opp(p)
)

Γ′(λΓ
opp(p))

)(
ρ+ λΓ

opp(p)
) (
ρ+ Γ(λΓ

opp(p))
)

Γ′′(γ)
> 1.

This completes the proof of convexity on (p∗, q). For p > q, convexity has been shown in

Lemma 6. Since V Γ
opp(p) is continuously differentiable at p = q, V Γ

opp(p) is strictly convex

on [0, 1].

Third, by Lemma 14.(a), convexity implies that the maximization problem in (C.14)

is concave so that the first-order condition is sufficient. Therefore, V Γ
opp(p) satisfies (C.14)

or for p > p∗.

Finally, convexity, together with (C.23) and (C.24) implies that V Γ
opp(p) ≥ US(p) for

p ≥ p∗. Lemma 9 then implies that V Γ
opp(p) satisfies (C.11).

Finally we show that λΓ
opp(p) is strictly increasing.

Lemma 20. Suppose Assumptions 1 and 2 are satisfied and let q, q be given as in Lemma
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18. Then λΓ
opp(p) is strictly increasing on

(
q, q
)
.

Proof. For p ∈ (q, q), V Γ
opp(p) = A(λopp(p))u. Differentiating with respect to p we get

V Γ′
opp(p) = A′(λopp(p))λ

′
opp(p)u.

Hence if λ′(p) = 0 for p 6= 1/2, we must have V Γ′
opp(p) = 0. Since V Γ′

opp(1/2) = 0, this violates

strict convexity of V Γ
opp(p). Therefore λ′(p) 6= 0 for all p ∈ (q, q). Since λ′(1/2) > 0, this

implies that λ′(p) > 0 if p ∈ (q, q).

C.4.5 Optimal Solution

As in our original model we show that the value function V Γ is the upper envelope of

the two solution candidates. In contrast to our original model, the optimal policy is not

a bang-bang solution. We show that inside the own-biased region, α(p) = g−1(λ(p)) is

decreasing whenever it is not a corner-solution. This means that more extreme beliefs lead

to a more own-biased news-diet. In the opposite-biased region, α(p) is strictly increasing.

This implies that more moderate beliefs lead to a more balanced news-diet.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied.

(a) If (EXP) is violated then V Γ(p) = U(p) for all p ∈ [0, 1].

(b) If (EXP) is satisfied and V Γ
own(p) > US(p) for all p 6= 1/2, then V Γ(p) = V Γ

own(p)

for all p ∈ [0, 1], and α(p) = g−1(λ(p)) is strictly decreasing if V Γ(p) > U(p) and

α(p) = g−1(λ(p)) ∈ (0, 1).

(c) If (EXP) is satisfied and V Γ
own(p) = US(p) for some p 6= 1/2, then V Γ(p) =

max
{
V Γ
own(p), V Γ

opp(p)
}

, and α(p) = g−1(λ(p)) is strictly decreasing if V Γ(p) =

V Γ
own(p) > U(p) and λ(p) ∈ (0, 1), and strictly increasing if V Γ(p) = V Γ

opp(p).

Proof of Theorem 2. Follows from the same arguments as the proof of Theorem 1.

C.5 Multiple Actions

In this Appendix, we extend the model in Section II to include a third action x = m

which yields uRm and uLm in states R and L. Up to relabeling of the actions it is without

loss to assume that uRm ∈
(
uR` , u

R
r

)
. Further we assume uLm < uL` which guarantees that

action m does not dominate action ` for all beliefs.

The optimal policy will be affected by the availability of action m if it is optimal to

take this action for some beliefs. To identify when this is the case, we define a strategy

that specifies a stopping region [p
m
, pm] in which action m is taken immediately. For

p > pm, the strategy prescribes attention to the L-biased news source (α = 1) and for

p < p
m

, the strategy prescribes attention to the R-biased news source (α = 0). We call
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this strategy the “m-strategy.” It has the following structure:

p=

|
0

−→−→−→−→︸ ︷︷ ︸
α=0

p
m

———————︸ ︷︷ ︸
immediate action m

pm←−←−←−←−︸ ︷︷ ︸
α=1

|
1

If this strategy is part of the optimal solution (for some range of belief), the bound-

ary points p
m

and pm must satisfy value-matching and smooth-pasting conditions that

resemble those used to define p∗ and p∗. We will define pm by imposing smooth pasting

and value matching with Um(p) in (A8):

c+ ρUm(p) = λp
(
uRr − Um(p)

)
− λp(1− p)U ′m(p). (C.26)

Similarly we will define p
m

by imposing smooth pasting and value matching with Um(p)

in (A7):

c+ ρUm(p) =λ(1− p)
(
uL` − Um(p)

)
+ λp(1− p)U ′m(p). (C.27)

The following lemma identifies when solutions to (C.26) and (C.27) exist, and when

these solutions can be used to define the cutoffs p
m

and pm in a way the m-strategy only

prescribes information acquisition if it is not dominated by immediate action m or by the

stationary strategy.

Lemma 21.

(a) Let uRm ≥ UFA(1) or c + ρuLm ≤ 0. If q1 ∈ (0, 1) is a solution to (C.26), then

V1(p; q1, Um(q1)) ≤ Um(p) for all p ∈ [q1, 1].

(b) If uRm < UFA(1) and c + ρuLm > 0, then there exists a unique solution q1 ∈ (0, 1) to

(C.26) given by

q1 =
uLmρ+ c

ρ (uLm − uRm) + (uRr − uRm)λ
. (C.28)

and V1(p; q1, Um(q1)) is strictly convex on [q1, 1].

(c) Let uLm ≥ UFA(0) or c + ρuRm ≤ 0. If q2 ∈ (0, 1) is a solution to (C.27), then

V0(p; q2, Um(q2)) ≤ Um(p) for all p ∈ [0, q2].

(d) If uLm < UFA(0) and c + ρuRm > 0, then there exists a unique solution q2 ∈ (0, 1) to

(C.27) given by

q2 =

(
uL` − uLm

)
λ− uLmρ− c

ρ (uRm − uLm) + (uL` − uLm)λ
(C.29)

and V0(p; q2, Um(q2)) is strictly convex on [0, q2].

(e) Suppose uRm < UFA(1) and c + ρuLm > 0, and uLm < UFA(0) and c + ρuRm > 0. If

Um(q1) ≥ US(q1) and Um(q2) ≥ US(q2), then q1 ≥ q2.
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Proof. For (a) and (b) we note that the general solution to (A8) is given by

V1(p) =
pρuRr λ− c (ρ+ (1− p)λ)

ρ(ρ+ λ)︸ ︷︷ ︸
=:z(p)

+

(
1− p
p

) ρ
λ

(1− p)C,

there C is the constant of integration. Clearly, the sign of C determines whether the

solution is convex or concave since

d2

dp2

((
1− p
p

) ρ
λ

(1− p)

)
> 0

Moreover, we note the V1(1) = UFA(1) regardless of the value of the constant C.

For the proof of (a) we distinguish several cases: Case 1: If uRm = UFA(1) and c+ρuLm =

0. In this case, Um(p) = z(p) for all p. Hence any q1 ∈ (0, 1) satisfies (C.26) and smooth

pasting but V (p; q1, Um(q1)) = Um(p) for all p ∈ [0, 1].

Case 2: uRm > UFA(1). We first show that if (C.26) and smooth pasting is sat-

isfied for p′ ∈ (0, 1), then Um(p′) < z(p). Suppose by contradiction that Um(p′) ≥
z(p′). If (C.26) is satisfies at p′, then Um(p) is tangent to V1(p; p′, Um(p′)at p′ and since

V1(p; p′, Um(p′)) ≥ z(p), V1(p; p′, Um(p′)) is weakly convex as a function of p. But this

implies that V1(1; p′, Um(p′)) ≥ Um(1) = uRm > UFA(1). This is a contradiction since we

argued above that any solution to (A8) satisfies V1(1) = UFA(1). Hence (C.26) or smooth

pasting is violated at p′ if Um(p′) ≥ z(p′). If Um(p′) ≤ z(p′), (C.26), and smooth pasting

is satisfied for p′ ∈ (0, 1), then V1(p; p′, Um(p′)) is strictly concave as a function of p and

tangent to Um(p) at p′. Hence V1(p; p′, Um(p′)) < Um(p) for all p > p′.

Case 3: uRm < UFA(1). If c+ ρuLm ≤ 0, then Um(0) < z(0) and since z(1) = UFA(1) we

have Um(p) < z(p) for all p. As in case 2, if p′ ∈ (0, 1) satisfies (C.26) and smooth pasting,

then V1(p; p′, Um(p′)) < Um(p) for all p > p′ which contradicts V1(1; p′, Um(p′)) = UFA(1).

Hence there is no solution to (C.26) that satisfies smooth pasting. This concludes the

proof of (a).

For (b), note that if uRm < UFA(1) and c + ρuLm > 0, then Um(p) crosses z(p) from

above. As in case 3 in the proof for part (a), z(p′) > Um(p) implies that (C.26) and

smooth pasting cannot be both satisfied. Next we identify a solution q1 to (C.26) for which

V ′(q1; q1, Um(q1)) = U ′m(q1). If Um(q1) = z(q1) then V ′(q1; q1, Um(q1)) = z′(q1) = U ′m(q1).

On the hand limq1→0 V
′(q1; q1, Um(q1)) = −∞. Therefore, the intermediate value theorem

implies that there exists q1 ∈ (0, 1) such that V ′(q1; q1, Um(q1)) = U ′m(q1) and simple

algebra shows that is is given by (C.28).

The proofs of (c) and (d) follow from a similar argument. For part (e) suppose by

contradiction that q1 < q2. Since both V1(p; q1, Um(q1)) and V0(p; q0, Um(q0)) are strictly

convex on [q1, q2] and coincide with Um(p) at q1 and q2, respectively, there exists p′ ∈
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(q1, q2) such that V1(p′; q1, Um(q1)) = V0(p′; q0, Um(q0)) > Um(p′) and V ′1(p′; q1, Um(q1)) >

V ′0(p′; q0, Um(q0)). Since Um(p) ≥ US(p) for p ∈ q1, q2 and both Um and US are lin-

ear, we have V1(p′; q1, Um(q1)) = V0(p′; q0, Um(q0)) > US(p′). By Lemma 2 this implies

V ′1(p′; q1, Um(q1)) < V ′0(p′; q0, Um(q0)) which is a contradiction. Therefore we must have

q1 ≥ q2.

Based on the results of this lemma, we define p
m

and pm as follows:

pm =

q1, if uRm < UFA(1), c+ ρuLm > 0, and Um(q1) ≥ US(q1)

1, otherwise.

p
m

=

q2, if uLm < UFA(0), c+ ρuRm > 0, and Um(q2) ≥ US(q2)

0, otherwise.

Consider pm. By Lemma 21.(a)-(b) uRm < UFA(1) together with c + ρuLm > 0 is a

necessary and sufficient condition for the existence of a solution in (0, 1) to (C.26) that

satisfies smooth pasting and is not dominated by immediate action m. Hence if the

necessary and sufficient condition is violated we set pm = 1. Similarly, Lemma 21.(c)-(d)

motivates the definition of p
m

= 0 if uBm ≥ UFA(0) and c+ ρuRm ≤ 0.

The requirements that Um(q1) ≥ US(q1) in the definition of pm and Um(q2) ≥ US(q2) in

the definition of p
m

, guarantee, respectively, that the m-strategy always has the structure

depicted in the diagram above because it avoids defining pm = q1 and p
m

= q2 when

q2 > q1.

The value of the m-strategy is

Vm(p) :=


V0(p; p

m
, Um(p

m
)), for p < p

m
,

Um(p), for p ∈
[
p
m
, pm

]
,

V1(p; pm, Um(pm)), for p > pm.

The Lemmas leading to the upper envelope characterization of the value function in

Proposition 9 depend on the properties of branches defined by particular solutions to (A7)

and (A8). Therefore the same steps can be applied in this extension and we obtain that

the value function of the extended problem is given by:

V (p) = max {Vown(p), Vopp(p), Vm(p)} .

It is straightforward to extend this to more than three actions. Suppose we have

actions `, r as well as additional actions m1,m2, . . ., where for all i = 1, 2, . . ., (uRmi , u
A
mi

)

satisfy the conditions formulated for action m at the beginning of this section. In this

case we define an mi-strategy for each of the actions in the same way as above. Denote
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the value of strategy mi by Vmi(p). The value function of the DM’s problem is then given

by

V (p) = max {Vown(p), Vopp(p), Vm1(p), Vm2(p), . . .} .
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