Optimal Queue Design

Yeon-Koo Che¹ and Olivier Tercieux²

¹Columbia University

²Paris School of Economics

October 21, 2021

Introduction

- Much of goods and services are allocated through non-market means, or "rationed," by far most commonly through "waiting in line."
- But waiting is costly and painful:
 - 6 months of life waiting in line for things (e.g., schools, hospitals, bookstores, libraries, banks, post office, petrol pumps, theatres...)
 - ▶ 43 days on hold with call centers (Brown et al. 2005)
- Challenge: How to efficiently provide incentives for waiting in line?
- Queue designer has several instruments at disposal (imagine call centers): entry and exit, queueing rule, the information policy.
- Existing queueing theory, in particular, *rational queueing (e.g., Hassin (2016))*, treats this issue, but in limited scopes both in terms of the design variables and agents' incentives.

What We Do

- We take a Myerson-style mechanism design approach to the design of the optimal queueing system,
- allowing all three aspects of queue design— entry/exit, queueing rule, and the information policy—chosen optimally
- while taking into consideration incentives for agents to join a queue and to stay in the queue, whenever necessary.
- We show: Under a mild condition, the optimal policy is implemented by **first-come-first-served** with the policy of **no information** given to the agents about the queue.

A queueing model with general Markov process

- Continuous time.
- Primitive process: At each instant,
 - ▶ an agent arrives (randomly) at a Poisson rate $\lambda_k > 0$
 - and is served (randomly) at a Poisson rate µ_k > 0 (= average service time is 1/µ_k),

when there are k agents in the queue.

- Dependence on k allows for extra generality: See next slides.
- Assume **Regularity**:

(i) μ_k is nondecreasing and concave in k

- (ii) $\lambda_{k+1} \lambda_k \leq \mu_{k+1} \mu_k$, $\forall k$
- A mild assumption satisfied in virtually all realistic environments.

Examples:

- M/M/1: λ_k , μ_k do not depend on k
- M/M/c: λ_k does not depend on k and $\mu_k = \min\{k, c\}\mu$,
- Dynamic matching with stochastic compatibility
 - effective arrival rate = arrival rate × prob of not compatible with anybody in the queue (depends on k)
 - effective exit rate = arrival rate × prob of somebody in the queue being compatible (depends on k)

Preferences

Standard queueing model: homogeneous preferences with linear waiting costs.

• Agents' payoffs:

$$U(t)=V-C\cdot t,$$

where *t* the time spent in the system.

- V > 0: net surplus from service
- ► C > 0: per-period cost of waiting
- zero outside option.
- The firm receives R > 0 from each agent served
- Designer's objective. Weighted sum of firm's and agents' payoffs.

Queueing Mechanism

• Entry rule: $x = (x_k)$, where x_k is prob of recommending entry in a queue of length k

"Please hold; somebody will be with you" or "... please come back some other time; good bye."

 Exit rule: y = (y_{k,ℓ}), where y_{k,ℓ} is the rate of removal when queue length is k and position is ℓ; we also allow for a "lumpy" exit upon a new entry (omitted here)

"We are experiencing unusual call volume, please come back later"

Queueing Mechanism—Continued

- Queueing rule: $q = (q_{k,\ell})$ where $q_{k,\ell}$ the service rate when queue length is k and position is ℓ , such that
 - Feasibility: For any set $S \subset \{1, ..., k\}$ of |S| = m agents:

$$\sum_{j\in S}q_{k,j}\leq \mu_m$$

Work-conservation:

$$\sum_{\ell=1}^{k} q_{k,\ell} = \mu_k$$

- Examples:
 - ► First-Come First-Served (FCFS): $q_{k,1} = \mu_1, q_{k,2} = \mu_2 \mu_1, ..., q_{k,\ell} = \mu_\ell \mu_{\ell-1}$. (M/M/1, $q_{k,\ell} = \mu$ if $\ell = 1$ and 0 o/wise)
 - ► Last-Come First-Served (LCFS): $q_{k,k} = \mu_1, q_{k,k-1} = \mu_2 \mu_1, ..., q_{k,\ell} = \mu_{k-\ell+1} \mu_{k-\ell}$ (M/M/1, $q_{k,\ell} = \mu$ if $\ell = k$ and 0 o/wise)
 - Service-In-Random-Order (SIRO): $q_{k,\ell} = \mu_k / k$

Queueing Mechanism—Continued

- Information rule: $I = (I_t)$, where I_t specifies the information an agent gets about the state—i.e., the queue length k and her position ℓ —for each time $t \ge 0$ spent on the queue.
- Examples:
 - Full information
 - No information (beyond recommendations)

Overview

- The entry/exit rules (x, y), together with (λ, μ), induces a Markov chain on the queue length k with an invariant distribution p = (p_k) ∈ Δ(ℤ₊).
- We focus on the problem at steady state, or invariant distribution:

"Maximize designer objective (at the invariant dist) subject to: Agents have incentives to join and stay whenever needed."

• Why IC? Agents can be denied entry or removed without consent, but they cannot be coerced to join the queue or staying in it against their will.

Related Literature

- Queueing Design with fixed information rule:
 - Naor (1969), Hassin (1985), Su and Zenios (2004): Excessive incentives for queueing under FCFS, corrected by LCFS
 - Leshno (2019): Insufficient incentives for queueing under FCFS, corrected by SIRO or LIEW
 - Bloch and Cantala (2017), Margaria (2020),...
 - Ashlagi, Faidra, and Nikzad (2020)
- Information Design with fixed queueing rules:
 - Hassin and Koshman (2017), Lingenbrink and Iyer (2019), Anunrojwong, Iyer, and Manshadi (2020)
- Current work distinguished by:
 - ▶ the generality of the primitive Markov process and designer objective
 - the comprehensiveness of mechanism design approach
 - the consideration of dynamic incentive issues

Designer's problem

Designer chooses (x, y, q, I) to solve:

[P]Maximize designer objective at p,subject to(B)p is an invariant distr given by (x, y)and(IC)incentives to join or stay when recommended

Designer's problem

Designer chooses (x, y, q, I) to solve:

$$[P] \qquad \text{Maximize } (1-\alpha) \sum_{k=1}^{\infty} p_k \mu_k R + \alpha \sum_{k=1}^{\infty} p_k (\mu_k V - kC),$$

subject to

(B)
$$\lambda_k x_k p_k = (\mu_{k+1} + \sum_{\ell} y_{k+1,\ell}) p_{k+1}, \forall k$$

and

(IC) Incentive constraints for every signal at each time t

Remark: Difficult to solve.

A relaxed LP problem

The designer chooses (only!) p

$$[P'] \qquad \text{Maximize } (1-\alpha) \sum_{k=1}^{\infty} p_k \mu_k R + \alpha \sum_{k=1}^{\infty} p_k (\mu_k V - kC),$$

subject to relaxation of balance equation:

$$(B') \qquad \qquad \lambda_k p_k - \mu_{k+1} p_{k+1} \ge 0$$

subject to relaxed incentive compatibility:

$$(IR) \qquad \qquad \sum_{k=1}^{\infty} p_k(\mu_k V - kC) \ge 0.$$

Remark: (IR) equivalent to "agents having incentives to join under no information."

Optimality of Cutoff Policy

Theorem

If μ is regular, then an optimal solution of relaxed program [P'] is a cutoff policy, meaning there exists $K^* \ge 0$ such that agents are allowed to queue up to K^* .

Note: Random rationing possible at $K^* - 1$.

Implication: No need for removing agents.

Optimality of FCFS with no information

Theorem

Assume the primitive process is regular. **FCFS** + **no information** (*i.e.*, beyond that inferred by recommendation) is optimal.

- Can implement the cutoff policy that solves the relaxed program [P'] with FCFS + No information.
- Proof:
 - **(**) Incentives to join the queue: Holds since (IR) is satisfied at the solution.
 - Incentives to stay in the queue until served: non-trivial.

We show: Under regularity, beliefs about queue position improve over time \Rightarrow Residual waiting time falls.

Intuition

- Question: Is "time spent in the queue" good news or bad news?
 - Good news: conditional on the initial queue length, under FCFS, position in queue can only improve
 - ► Bad news: "the initial queue length may have been longer" ⇒ pessimistic updating

We show that, given the regularity of the primitive process, good news dominates bad news.

Belief about position $\ell = 1$

18 / 27

Belief about position $\ell = 1$

19 / 27

Evolution of beliefs under FCFS with no information

- γ_{ℓ}^{t} = belief that position is ℓ after spending time $t \geq 0$ on the queue.
- Consider likelihood ratios: $r_{\ell}^{t} \triangleq \frac{\gamma_{\ell}^{t}}{\gamma_{\ell-1}^{t}}$, for all $\ell = 2, ..., K^{*}$.
- Suffices to show: the likelihood ratios $(r_{\ell}^t)_{\ell}$ fall in t.
 - \Rightarrow Beliefs about queue position improve over time
 - \Rightarrow Residual waiting time falls.

Do the likelihood ratios fall?

• How does (r_{ℓ}^t) evolve?

$$r_{\ell}^{t+dt} = \frac{\gamma_{\ell}^{t+dt}}{\gamma_{\ell-1}^{t+dt}} = \frac{(1-\mu_{\ell}dt)\gamma_{\ell}^{t} + (\mu_{\ell}dt)\gamma_{\ell+1}^{t}}{(1-\mu_{\ell-1}dt)\gamma_{\ell-1}^{t} + (\mu_{\ell-1}dt)\gamma_{\ell}^{t}} + o(dt).$$

 \Rightarrow System of ODEs of the likelihood ratios:

$$\dot{r}_{\ell}^{t} = r_{\ell}^{t} \left(-(\mu_{\ell} - \mu_{\ell-1}) + (\mu_{\ell} r_{\ell+1}^{t} - \mu_{\ell-1} r_{\ell}^{t}) \right)$$

• Generally ambiguous. The "initial beliefs" matter!

Evolution of beliefs under FCFS with no information

• The likelihood ratios at t = 0 given by the invariant distr. (cf. PASTA): $\forall \ell = 2, ..., K^*$,

$$\begin{aligned} \dot{r}_{\ell}^{0} &= r_{\ell}^{0} \left(-(\mu_{\ell} - \mu_{\ell-1}) + (\mu_{\ell} r_{\ell+1}^{0} - \mu_{\ell-1} r_{\ell}^{0}) \right) \\ &= r_{\ell}^{0} \left(-(\mu_{\ell} - \mu_{\ell-1}) + (\mu_{\ell} \frac{\lambda_{\ell}}{\mu_{\ell}} - \mu_{\ell-1} \frac{\lambda_{\ell-1}}{\mu_{\ell-1}}) \right) \\ &= r_{\ell}^{0} \left(-(\mu_{\ell} - \mu_{\ell-1}) + (\lambda_{\ell} - \lambda_{\ell-1}) \right) \leq 0. \end{aligned}$$

• The system of ODEs is "cooperative":

$$\dot{r}^0 \leq 0 \Rightarrow \dot{r}^t \leq 0$$
 for all t

Necessity of FCFS for Optimality

In principle, other queueing rules or information rules may work under some environments. But FCFS with no information is uniquely optimal in a *maximal domain sense*

Theorem

For any queueing rule differing from FCFS, there exists a queueing environment (λ, μ, V, C) under which the rule can't implement the optimal policy regardless of the information policy.

Residual waiting time under alternative queueing rules.

Concluding Thoughts

- Without info design, FCFS is typically suboptimal, and optimal policy is unknown and difficult to find.
- With information design, FCFS is (uniquely) optimal
- Of course, there may be unmodeled benefits of providing information on queue position or expected waiting times
 - intrinsic value of transparency
 - ambiguity aversion...
- We have identified a novel role for queueing disciplines in regulating agents' beliefs, and their dynamic incentives
- Revealed a hitherto-unrecognized virtue of FCFS in this regard.

Thank You!

References

- ANUNROJWONG, J., K. IYER, AND V. MANSHADI (2020): "Information Design for Congested Social Services: Optimal Need-Based Persuasion," EC '20: Proceedings of the 21st ACM Conference on Economics and Computation, pp. 349–350.
- ASHLAGI, I., M. FAIDRA, AND A. NIKZAD (2020): "Optimal Dynamic Allocation: Simplicity through Information Design," Discussion paper, Stanford.
- BLOCH, F., AND D. CANTALA (2017): "Dynamic assignment of objects to queuing agents," American Economic Journal: Microeconomics, 9, 88–122.
- HASSIN, R. (1985): "On the optimality of first come last served queues," *Econometrica*, 53, 201–202.
- HASSIN, R. (2016): Rational Queueing. CRC Press.
- HASSIN, R., AND A. KOSHMAN (2017): "Profit maximization in the M/M/1 queue," Operations Research Letters, 45, 436–441.
- LESHNO, J. (2019): "Dynamic matching in overloaded waiting lists," Discussion paper, SSRN Working Paper 2967011.
- LINGENBRINK, D., AND K. IYER (2019): "Optimal signaling mechanisms in unobservable queues," Operations Research, 67, 1397–1416.
- MARGARIA, C. (2020): "Queueing to learn," Discussion paper, Boston University. $_{/27}$